Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane

In the study of dynamic systems, bifurcation diagrams are a very popular graphical tool for studying stability and nonlinear changes in behavior. They are instrumental in analyzing the system’s response to parameter changes. These diagrams show the system’s various dynamic patterns and phase transit...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis Javier Ontañón-García, Juan Gonzalo Barajas-Ramírez, Eric Campos-Cantón, Daniel Alejandro Magallón-García, César Arturo Guerra-García, José Ricardo Cuesta-García, Jonatan Pena-Ramirez, José Luis Echenausía-Monroy
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/11/1818
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849331099844476928
author Luis Javier Ontañón-García
Juan Gonzalo Barajas-Ramírez
Eric Campos-Cantón
Daniel Alejandro Magallón-García
César Arturo Guerra-García
José Ricardo Cuesta-García
Jonatan Pena-Ramirez
José Luis Echenausía-Monroy
author_facet Luis Javier Ontañón-García
Juan Gonzalo Barajas-Ramírez
Eric Campos-Cantón
Daniel Alejandro Magallón-García
César Arturo Guerra-García
José Ricardo Cuesta-García
Jonatan Pena-Ramirez
José Luis Echenausía-Monroy
author_sort Luis Javier Ontañón-García
collection DOAJ
description In the study of dynamic systems, bifurcation diagrams are a very popular graphical tool for studying stability and nonlinear changes in behavior. They are instrumental in analyzing the system’s response to parameter changes. These diagrams show the system’s various dynamic patterns and phase transitions by plotting the relationship between the system response and the parameters. This paper presents a computational algorithm for studying bifurcations in dynamic systems, especially for systems with chaotic behavior that depends on parameter changes. Depending on the type of system to be analyzed, the following two strategies for computing bifurcation diagrams are described: (i) detecting crossing points through the Poincaré plane and (ii) the identification of local maxima (or minima) in one of the system solutions. In addition, this paper presents a method for implementing parallel computation in MATLAB using the <i>Parallel Computing Toolbox</i> from MathWorks, which significantly reduces the computational time required to generate bifurcation diagrams. This work contributes to the study of dynamic systems by providing the reader with accessible tools for studying any dynamic system under established standards and reducing the computational time required for these types of studies by implementing these algorithms utilizing the multi-core processors found in modern computers.
format Article
id doaj-art-99f9b7d7f5a5411b8dda64c1524a4807
institution Kabale University
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-99f9b7d7f5a5411b8dda64c1524a48072025-08-20T03:46:43ZengMDPI AGMathematics2227-73902025-05-011311181810.3390/math13111818Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection PlaneLuis Javier Ontañón-García0Juan Gonzalo Barajas-Ramírez1Eric Campos-Cantón2Daniel Alejandro Magallón-García3César Arturo Guerra-García4José Ricardo Cuesta-García5Jonatan Pena-Ramirez6José Luis Echenausía-Monroy7Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, MexicoDivisión de Control y Sistemas Dinámicos, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICyT), Camino a la Presa San José 2255, Lomas 4ta. Sección, San Luis Potosí 78216, SLP, MexicoDivisión de Control y Sistemas Dinámicos, Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICyT), Camino a la Presa San José 2255, Lomas 4ta. Sección, San Luis Potosí 78216, SLP, MexicoCoordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, MexicoCoordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Carretera a Santo Domingo 200, Salinas de Hidalgo 78600, SLP, MexicoApplied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, MexicoApplied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, MexicoApplied Physics Division, Department of Electronics and Telecommunications, CICESE Research Center, Carr. Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Ensenada 22860, BC, MexicoIn the study of dynamic systems, bifurcation diagrams are a very popular graphical tool for studying stability and nonlinear changes in behavior. They are instrumental in analyzing the system’s response to parameter changes. These diagrams show the system’s various dynamic patterns and phase transitions by plotting the relationship between the system response and the parameters. This paper presents a computational algorithm for studying bifurcations in dynamic systems, especially for systems with chaotic behavior that depends on parameter changes. Depending on the type of system to be analyzed, the following two strategies for computing bifurcation diagrams are described: (i) detecting crossing points through the Poincaré plane and (ii) the identification of local maxima (or minima) in one of the system solutions. In addition, this paper presents a method for implementing parallel computation in MATLAB using the <i>Parallel Computing Toolbox</i> from MathWorks, which significantly reduces the computational time required to generate bifurcation diagrams. This work contributes to the study of dynamic systems by providing the reader with accessible tools for studying any dynamic system under established standards and reducing the computational time required for these types of studies by implementing these algorithms utilizing the multi-core processors found in modern computers.https://www.mdpi.com/2227-7390/13/11/1818bifurcation diagramFeigenbaum diagramdynamical systemschaosparallel computingHPC
spellingShingle Luis Javier Ontañón-García
Juan Gonzalo Barajas-Ramírez
Eric Campos-Cantón
Daniel Alejandro Magallón-García
César Arturo Guerra-García
José Ricardo Cuesta-García
Jonatan Pena-Ramirez
José Luis Echenausía-Monroy
Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
Mathematics
bifurcation diagram
Feigenbaum diagram
dynamical systems
chaos
parallel computing
HPC
title Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
title_full Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
title_fullStr Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
title_full_unstemmed Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
title_short Algorithm for Generating Bifurcation Diagrams Using Poincaré Intersection Plane
title_sort algorithm for generating bifurcation diagrams using poincare intersection plane
topic bifurcation diagram
Feigenbaum diagram
dynamical systems
chaos
parallel computing
HPC
url https://www.mdpi.com/2227-7390/13/11/1818
work_keys_str_mv AT luisjavierontanongarcia algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT juangonzalobarajasramirez algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT ericcamposcanton algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT danielalejandromagallongarcia algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT cesararturoguerragarcia algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT josericardocuestagarcia algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT jonatanpenaramirez algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane
AT joseluisechenausiamonroy algorithmforgeneratingbifurcationdiagramsusingpoincareintersectionplane