New method of text representation model based on neural network
Method of text representation model was proposed to extract word-embedding from text feature.Firstly,the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created.Then,feature vectors was obtained further from these extracted word...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Journal on Communications
2017-04-01
|
Series: | Tongxin xuebao |
Subjects: | |
Online Access: | http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2017088/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Method of text representation model was proposed to extract word-embedding from text feature.Firstly,the word-embedding of the dual word-embedding list based on dictionary index and the corresponding part of speech index was created.Then,feature vectors was obtained further from these extracted word-embeddings by using Bi-LSTM recurrent neural network.Finally,the sentence vectors were processed by mean-pooling layer and text categorization was classified by softmax layer.The training effects and extraction performance of the combination model of Bi-LSTM and double word-embedding neural network were verified.The experimental results show that this model not only performs well in dealing with the high-quality text feature vector and the expression sequence,but also significantly outperforms other three kinds of neural networks,which includes LSTM,LSTM+context window and Bi-LSTM. |
---|---|
ISSN: | 1000-436X |