A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning

This work presents an overview of a set of in-house-built software tools intended for state-of-the-art semiconductor device modelling, ranging from numerical simulators to post-processing tools and prediction codes based on statistics and machine learning techniques. First, VENDES is a 3D finite-ele...

Full description

Saved in:
Bibliographic Details
Main Authors: Antonio J. Garcia-Loureiro, Natalia Seoane, Julian G. Fernandez, Enrique Comesana
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10531738/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846099185258987520
author Antonio J. Garcia-Loureiro
Natalia Seoane
Julian G. Fernandez
Enrique Comesana
author_facet Antonio J. Garcia-Loureiro
Natalia Seoane
Julian G. Fernandez
Enrique Comesana
author_sort Antonio J. Garcia-Loureiro
collection DOAJ
description This work presents an overview of a set of in-house-built software tools intended for state-of-the-art semiconductor device modelling, ranging from numerical simulators to post-processing tools and prediction codes based on statistics and machine learning techniques. First, VENDES is a 3D finite-element based quantum-corrected semi-classical/classical toolbox able to characterise the performance, scalability, and variability of transistors. MLFoMPy is a Python-based tool that post-processes IV characteristics, extracting the most relevant figures of merit and preparing the data for subsequent statistical or machine learning studies. FSM is a variability prediction tool that also pinpoints the most sensitive regions of a device to a specific source of fluctuation. Finally, we also describe machine learning-based prediction tools that were used to obtain full IV curves and specific figures of merit of devices suffering the influence of several sources of variability.
format Article
id doaj-art-997e2ed63b834c1ca0ec3684b7555be1
institution Kabale University
issn 2168-6734
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Journal of the Electron Devices Society
spelling doaj-art-997e2ed63b834c1ca0ec3684b7555be12025-01-01T00:00:49ZengIEEEIEEE Journal of the Electron Devices Society2168-67342024-01-01121057106410.1109/JEDS.2024.340185210531738A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine LearningAntonio J. Garcia-Loureiro0https://orcid.org/0000-0003-0574-1513Natalia Seoane1https://orcid.org/0000-0003-0973-461XJulian G. Fernandez2https://orcid.org/0000-0002-1347-4577Enrique Comesana3https://orcid.org/0000-0001-8422-5394Centro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, SpainCentro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, SpainCentro Singular de Investigación en Tecnoloxías Intelixentes, Universidade de Santiago de Compostela, Santiago de Compostela, SpainEscola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Santiago de Compostela, SpainThis work presents an overview of a set of in-house-built software tools intended for state-of-the-art semiconductor device modelling, ranging from numerical simulators to post-processing tools and prediction codes based on statistics and machine learning techniques. First, VENDES is a 3D finite-element based quantum-corrected semi-classical/classical toolbox able to characterise the performance, scalability, and variability of transistors. MLFoMPy is a Python-based tool that post-processes IV characteristics, extracting the most relevant figures of merit and preparing the data for subsequent statistical or machine learning studies. FSM is a variability prediction tool that also pinpoints the most sensitive regions of a device to a specific source of fluctuation. Finally, we also describe machine learning-based prediction tools that were used to obtain full IV curves and specific figures of merit of devices suffering the influence of several sources of variability.https://ieeexplore.ieee.org/document/10531738/Semiconductor devices3D modellingfinite element methodquantum correctionsvariabilitypost-processing tools
spellingShingle Antonio J. Garcia-Loureiro
Natalia Seoane
Julian G. Fernandez
Enrique Comesana
A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
IEEE Journal of the Electron Devices Society
Semiconductor devices
3D modelling
finite element method
quantum corrections
variability
post-processing tools
title A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
title_full A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
title_fullStr A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
title_full_unstemmed A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
title_short A General Toolkit for Advanced Semiconductor Transistors: From Simulation to Machine Learning
title_sort general toolkit for advanced semiconductor transistors from simulation to machine learning
topic Semiconductor devices
3D modelling
finite element method
quantum corrections
variability
post-processing tools
url https://ieeexplore.ieee.org/document/10531738/
work_keys_str_mv AT antoniojgarcialoureiro ageneraltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT nataliaseoane ageneraltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT juliangfernandez ageneraltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT enriquecomesana ageneraltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT antoniojgarcialoureiro generaltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT nataliaseoane generaltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT juliangfernandez generaltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning
AT enriquecomesana generaltoolkitforadvancedsemiconductortransistorsfromsimulationtomachinelearning