Dynamic Imprints of Colliding-wind Dust Formation from WR 140

Carbon-rich Wolf–Rayet (WR) binaries are a prominent source of carbonaceous dust that contribute to the dust budget of galaxies. The “textbook” example of an episodic dust-producing WR binary, WR 140 (HD 193793), provides us with an ideal laboratory for investigating the dust physics and kinematics...

Full description

Saved in:
Bibliographic Details
Main Authors: Emma P. Lieb, Ryan M. Lau, Jennifer L. Hoffman, Michael F. Corcoran, Macarena Garcia Marin, Theodore R. Gull, Kenji Hamaguchi, Yinuo Han, Matthew J. Hankins, Olivia C. Jones, Thomas I. Madura, Sergey V. Marchenko, Hideo Matsuhara, Florentin Millour, Anthony F. J. Moffat, Mark R. Morris, Patrick W. Morris, Takashi Onaka, Marshall D. Perrin, Armin Rest, Noel Richardson, Christopher M. P. Russell, Joel Sanchez-Bermudez, Anthony Soulain, Peter Tuthill, Gerd Weigelt, Peredur M. Williams
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ad9aa9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841542622714265600
author Emma P. Lieb
Ryan M. Lau
Jennifer L. Hoffman
Michael F. Corcoran
Macarena Garcia Marin
Theodore R. Gull
Kenji Hamaguchi
Yinuo Han
Matthew J. Hankins
Olivia C. Jones
Thomas I. Madura
Sergey V. Marchenko
Hideo Matsuhara
Florentin Millour
Anthony F. J. Moffat
Mark R. Morris
Patrick W. Morris
Takashi Onaka
Marshall D. Perrin
Armin Rest
Noel Richardson
Christopher M. P. Russell
Joel Sanchez-Bermudez
Anthony Soulain
Peter Tuthill
Gerd Weigelt
Peredur M. Williams
author_facet Emma P. Lieb
Ryan M. Lau
Jennifer L. Hoffman
Michael F. Corcoran
Macarena Garcia Marin
Theodore R. Gull
Kenji Hamaguchi
Yinuo Han
Matthew J. Hankins
Olivia C. Jones
Thomas I. Madura
Sergey V. Marchenko
Hideo Matsuhara
Florentin Millour
Anthony F. J. Moffat
Mark R. Morris
Patrick W. Morris
Takashi Onaka
Marshall D. Perrin
Armin Rest
Noel Richardson
Christopher M. P. Russell
Joel Sanchez-Bermudez
Anthony Soulain
Peter Tuthill
Gerd Weigelt
Peredur M. Williams
author_sort Emma P. Lieb
collection DOAJ
description Carbon-rich Wolf–Rayet (WR) binaries are a prominent source of carbonaceous dust that contribute to the dust budget of galaxies. The “textbook” example of an episodic dust-producing WR binary, WR 140 (HD 193793), provides us with an ideal laboratory for investigating the dust physics and kinematics in an extreme environment. This study is among the first to utilize two separate JWST observations, from Cycle 1 ERS (2022 July) and Cycle 2 (2023 September), to measure WR 140’s dust kinematics and confirm its morphology. To measure the proper motions and projected velocities of the dust shells, we performed a novel point-spread function (PSF) subtraction to reduce the effects of the bright diffraction spikes and carefully aligned the Cycle 2 to the Cycle 1 images. At 7.7 μ m, through the bright feature common to 16 dust shells (C1), we find an average dust shell proper motion of 390  ±  29 mas yr ^−1 , which equates to a projected velocity of 2714  ±  188 km s ^−1 at a distance of 1.64 kpc. Our measured speeds are constant across all visible shells and consistent with previously reported dust expansion velocities. Our observations not only prove that these dusty shells are astrophysical (i.e., not associated with any PSF artifact) and originate from WR 140, but also confirm the “clumpy” morphology of the dust shells, in which identifiable substructures within certain shells persist for at least 14 months from one cycle to the next. These results support the hypothesis that clumping in the wind collision region is required for dust production in WR binaries.
format Article
id doaj-art-995376a1c6c64ba2a26521bf9e48df5c
institution Kabale University
issn 2041-8205
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-995376a1c6c64ba2a26521bf9e48df5c2025-01-13T18:06:54ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019791L310.3847/2041-8213/ad9aa9Dynamic Imprints of Colliding-wind Dust Formation from WR 140Emma P. Lieb0https://orcid.org/0000-0002-4660-7452Ryan M. Lau1https://orcid.org/0000-0003-0778-0321Jennifer L. Hoffman2https://orcid.org/0000-0003-1495-2275Michael F. Corcoran3Macarena Garcia Marin4https://orcid.org/0000-0003-4801-0489Theodore R. Gull5Kenji Hamaguchi6Yinuo Han7Matthew J. Hankins8Olivia C. Jones9Thomas I. Madura10Sergey V. Marchenko11Hideo Matsuhara12Florentin Millour13Anthony F. J. Moffat14Mark R. Morris15Patrick W. Morris16Takashi Onaka17https://orcid.org/0000-0002-8234-6747Marshall D. Perrin18Armin Rest19Noel Richardson20https://orcid.org/0000-0002-2806-9339Christopher M. P. Russell21https://orcid.org/0000-0002-9213-0763Joel Sanchez-Bermudez22Anthony Soulain23Peter Tuthill24Gerd Weigelt25Peredur M. Williams26https://orcid.org/0000-0002-8092-980XUniversity of Denver , Denver, CO 80210, USANOIRLab , Tucson, AZ 85719, USAUniversity of Denver , Denver, CO 80210, USACatholic University of America , Washington, DC 20064, USA; NASA Goddard Space Flight Center , Greenbelt, MD 20771, USAEuropean Space Agency , Space Telescope Science Institute, Baltimore, MD 21218​, USANASA Goddard Space Flight Center , Greenbelt, MD 20771, USANASA Goddard Space Flight Center , Greenbelt, MD 20771, USA; University of Maryland Baltimore County , Catonsville, MD 21250​, USACalifornia Institute of Technology , Pasadena, CA 91125, USAArkansas Tech University , Russellville, AR 72801-2222, USAUnited Kingdom Astronomy Technology Centre , Edinburgh, EH9 3HJ​, UKSan Jose State University , San Jose, CA 95112​, USAScience Systems and Applications , Inc., Lanham, MD 20706, USAInstitute of Space & Astronautical Science , Kanagawa, 252-5210, JapanObservatoire de la Cote d’Azur , Nice, 06300, FranceUniversite de Montreal , Montreal, Quebec, H2V 0B3, CanadaUniversity of California—Los Angeles , Los Angeles, CA 90095, USACalifornia Institute of Technology , Pasadena, CA 91125, USADepartment of Astronomy , Graduate School of Science, University of Tokyo, Tokyo 181-0015, JapanSpace Telescope Science Institute , Baltimore, MD 21218, USASpace Telescope Science Institute , Baltimore, MD 21218, USAEmbry-Riddle Aeronautical University , Prescott, AZ 86301, USADepartment of Physics and Astronomy, Bartol Research Institute, University of Delaware , Newark, DE 19716, USAInstituto de Astronomia, Universidad Nacional Autonoma de Mexico , 04510 Ciudad de México, CDMX, MexicoUniversity of Sydney , Sydney, New South Wales, NSW 2006​, AustraliaUniversity of Sydney , Sydney, New South Wales, NSW 2006​, AustraliaMax Planck Institute for Radio Astronomy , Bonn, D-53121​, GermanyInstitute for Astronomy, University of Edinburgh , Royal Observatory, Edinburgh, EH9 3HJ, UKCarbon-rich Wolf–Rayet (WR) binaries are a prominent source of carbonaceous dust that contribute to the dust budget of galaxies. The “textbook” example of an episodic dust-producing WR binary, WR 140 (HD 193793), provides us with an ideal laboratory for investigating the dust physics and kinematics in an extreme environment. This study is among the first to utilize two separate JWST observations, from Cycle 1 ERS (2022 July) and Cycle 2 (2023 September), to measure WR 140’s dust kinematics and confirm its morphology. To measure the proper motions and projected velocities of the dust shells, we performed a novel point-spread function (PSF) subtraction to reduce the effects of the bright diffraction spikes and carefully aligned the Cycle 2 to the Cycle 1 images. At 7.7 μ m, through the bright feature common to 16 dust shells (C1), we find an average dust shell proper motion of 390  ±  29 mas yr ^−1 , which equates to a projected velocity of 2714  ±  188 km s ^−1 at a distance of 1.64 kpc. Our measured speeds are constant across all visible shells and consistent with previously reported dust expansion velocities. Our observations not only prove that these dusty shells are astrophysical (i.e., not associated with any PSF artifact) and originate from WR 140, but also confirm the “clumpy” morphology of the dust shells, in which identifiable substructures within certain shells persist for at least 14 months from one cycle to the next. These results support the hypothesis that clumping in the wind collision region is required for dust production in WR binaries.https://doi.org/10.3847/2041-8213/ad9aa9Wolf-Rayet starsBinary starsDust formation
spellingShingle Emma P. Lieb
Ryan M. Lau
Jennifer L. Hoffman
Michael F. Corcoran
Macarena Garcia Marin
Theodore R. Gull
Kenji Hamaguchi
Yinuo Han
Matthew J. Hankins
Olivia C. Jones
Thomas I. Madura
Sergey V. Marchenko
Hideo Matsuhara
Florentin Millour
Anthony F. J. Moffat
Mark R. Morris
Patrick W. Morris
Takashi Onaka
Marshall D. Perrin
Armin Rest
Noel Richardson
Christopher M. P. Russell
Joel Sanchez-Bermudez
Anthony Soulain
Peter Tuthill
Gerd Weigelt
Peredur M. Williams
Dynamic Imprints of Colliding-wind Dust Formation from WR 140
The Astrophysical Journal Letters
Wolf-Rayet stars
Binary stars
Dust formation
title Dynamic Imprints of Colliding-wind Dust Formation from WR 140
title_full Dynamic Imprints of Colliding-wind Dust Formation from WR 140
title_fullStr Dynamic Imprints of Colliding-wind Dust Formation from WR 140
title_full_unstemmed Dynamic Imprints of Colliding-wind Dust Formation from WR 140
title_short Dynamic Imprints of Colliding-wind Dust Formation from WR 140
title_sort dynamic imprints of colliding wind dust formation from wr 140
topic Wolf-Rayet stars
Binary stars
Dust formation
url https://doi.org/10.3847/2041-8213/ad9aa9
work_keys_str_mv AT emmaplieb dynamicimprintsofcollidingwinddustformationfromwr140
AT ryanmlau dynamicimprintsofcollidingwinddustformationfromwr140
AT jenniferlhoffman dynamicimprintsofcollidingwinddustformationfromwr140
AT michaelfcorcoran dynamicimprintsofcollidingwinddustformationfromwr140
AT macarenagarciamarin dynamicimprintsofcollidingwinddustformationfromwr140
AT theodorergull dynamicimprintsofcollidingwinddustformationfromwr140
AT kenjihamaguchi dynamicimprintsofcollidingwinddustformationfromwr140
AT yinuohan dynamicimprintsofcollidingwinddustformationfromwr140
AT matthewjhankins dynamicimprintsofcollidingwinddustformationfromwr140
AT oliviacjones dynamicimprintsofcollidingwinddustformationfromwr140
AT thomasimadura dynamicimprintsofcollidingwinddustformationfromwr140
AT sergeyvmarchenko dynamicimprintsofcollidingwinddustformationfromwr140
AT hideomatsuhara dynamicimprintsofcollidingwinddustformationfromwr140
AT florentinmillour dynamicimprintsofcollidingwinddustformationfromwr140
AT anthonyfjmoffat dynamicimprintsofcollidingwinddustformationfromwr140
AT markrmorris dynamicimprintsofcollidingwinddustformationfromwr140
AT patrickwmorris dynamicimprintsofcollidingwinddustformationfromwr140
AT takashionaka dynamicimprintsofcollidingwinddustformationfromwr140
AT marshalldperrin dynamicimprintsofcollidingwinddustformationfromwr140
AT arminrest dynamicimprintsofcollidingwinddustformationfromwr140
AT noelrichardson dynamicimprintsofcollidingwinddustformationfromwr140
AT christophermprussell dynamicimprintsofcollidingwinddustformationfromwr140
AT joelsanchezbermudez dynamicimprintsofcollidingwinddustformationfromwr140
AT anthonysoulain dynamicimprintsofcollidingwinddustformationfromwr140
AT petertuthill dynamicimprintsofcollidingwinddustformationfromwr140
AT gerdweigelt dynamicimprintsofcollidingwinddustformationfromwr140
AT peredurmwilliams dynamicimprintsofcollidingwinddustformationfromwr140