Enhanced Ultra-Short-Term PV Forecasting Using Sky Imagers: Integrating MCR and Cloud Cover Estimation

Accurate photovoltaic (PV) power forecasting is crucial for stable grid integration, particularly under rapidly changing weather conditions. This study presents an ultra-short-term forecasting model that integrates sky imager data and meteorological radar data, achieving significant improvements in...

Full description

Saved in:
Bibliographic Details
Main Authors: Weixiong Wu, Rui Gao, Peng Wu, Chen Yuan, Xiaoling Xia, Renfeng Liu, Yifei Wang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/1/28
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate photovoltaic (PV) power forecasting is crucial for stable grid integration, particularly under rapidly changing weather conditions. This study presents an ultra-short-term forecasting model that integrates sky imager data and meteorological radar data, achieving significant improvements in forecasting accuracy. By dynamically tracking cloud movement and estimating cloud coverage, the model enhances performance under both clear and cloudy conditions. Over an 8-day evaluation period, the average forecasting accuracy improved from 67.26% to 77.47% (+15%), with MSE reduced by 39.2% (from 481.5 to 292.6), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> increased from 0.724 to 0.855, NSE improved from 0.725 to 0.851, and Theil’s U reduced from 0.42 to 0.32. Notable improvements were observed during abrupt weather transitions, particularly on 1 July and 3 July, where the combination of MCR and sky imager data demonstrated superior adaptability. This integrated approach provides a robust foundation for advancing ultra-short-term PV power forecasting.
ISSN:1996-1073