A two-step multiaxial racetrack filter algorithm for non-proportional load histories

The recently proposed multiaxial racetrack filter (MRF) is able to deal with general non-proportional multiaxial load histories. While only requiring a single user-defined scalar filter amplitude, the MRF is able to synchronously eliminate non-damaging events from any noisy multiaxial load history w...

Full description

Saved in:
Bibliographic Details
Main Authors: Marco Antonio Meggiolaro, Jaime Tupiassú Pinho de Castro, Hao Wu
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2017-07-01
Series:Fracture and Structural Integrity
Subjects:
Online Access:http://www.gruppofrattura.it/pdf/rivista/numero41/numero_41_art_1.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The recently proposed multiaxial racetrack filter (MRF) is able to deal with general non-proportional multiaxial load histories. While only requiring a single user-defined scalar filter amplitude, the MRF is able to synchronously eliminate non-damaging events from any noisy multiaxial load history without changing the overall shape of its original path, a necessary condition to avoid introducing errors in fatigue damage assessments. The MRF procedures are optimized here by the introduction of a pre-processing “partitioning” step on the load history data, which selects candidates for the reversal points in a robust partitioning process, highly increasing the filter efficiency and decreasing its computational time. The improved MRF is evaluated through the fatigue analyses of over-sampled tension-torsion data measured in 316L stainless steel tubular specimens under non-proportional load paths.
ISSN:1971-8993
1971-8993