Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)

Abstract Objectives Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This stud...

Full description

Saved in:
Bibliographic Details
Main Authors: Jacqueline I. Bereska, Michiel Zeeuw, Luuk Wagenaar, Håvard Bjørke Jenssen, Nina J. Wesdorp, Delanie van der Meulen, Leonard F. Bereska, Efstratios Gavves, Boris V. Janssen, Marc G. Besselink, Henk A. Marquering, Jan-Hein T. M. van Waesberghe, Davit L. Aghayan, Egidijus Pelanis, Janneke van den Bergh, Irene I. M. Nota, Shira Moos, Gunter Kemmerich, Trygve Syversveen, Finn Kristian Kolrud, Joost Huiskens, Rutger-Jan Swijnenburg, Cornelis J. A. Punt, Jaap Stoker, Bjørn Edwin, Åsmund A. Fretland, Geert Kazemier, Inez M. Verpalen, for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortium, the Dutch Colorectal Cancer Group Liver Expert Panel
Format: Article
Language:English
Published: SpringerOpen 2024-11-01
Series:Insights into Imaging
Subjects:
Online Access:https://doi.org/10.1186/s13244-024-01820-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846158467466788864
author Jacqueline I. Bereska
Michiel Zeeuw
Luuk Wagenaar
Håvard Bjørke Jenssen
Nina J. Wesdorp
Delanie van der Meulen
Leonard F. Bereska
Efstratios Gavves
Boris V. Janssen
Marc G. Besselink
Henk A. Marquering
Jan-Hein T. M. van Waesberghe
Davit L. Aghayan
Egidijus Pelanis
Janneke van den Bergh
Irene I. M. Nota
Shira Moos
Gunter Kemmerich
Trygve Syversveen
Finn Kristian Kolrud
Joost Huiskens
Rutger-Jan Swijnenburg
Cornelis J. A. Punt
Jaap Stoker
Bjørn Edwin
Åsmund A. Fretland
Geert Kazemier
Inez M. Verpalen
for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortium
the Dutch Colorectal Cancer Group Liver Expert Panel
author_facet Jacqueline I. Bereska
Michiel Zeeuw
Luuk Wagenaar
Håvard Bjørke Jenssen
Nina J. Wesdorp
Delanie van der Meulen
Leonard F. Bereska
Efstratios Gavves
Boris V. Janssen
Marc G. Besselink
Henk A. Marquering
Jan-Hein T. M. van Waesberghe
Davit L. Aghayan
Egidijus Pelanis
Janneke van den Bergh
Irene I. M. Nota
Shira Moos
Gunter Kemmerich
Trygve Syversveen
Finn Kristian Kolrud
Joost Huiskens
Rutger-Jan Swijnenburg
Cornelis J. A. Punt
Jaap Stoker
Bjørn Edwin
Åsmund A. Fretland
Geert Kazemier
Inez M. Verpalen
for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortium
the Dutch Colorectal Cancer Group Liver Expert Panel
author_sort Jacqueline I. Bereska
collection DOAJ
description Abstract Objectives Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-segmentation model on CT scans, to facilitate the clinical adoption of TTV. Methods We developed an auto-segmentation model to segment CRLM using 783 contrast-enhanced portal venous phase CTs (CT-PVP) of 373 patients. We used a self-learning setup whereby we first trained a teacher model on 99 manually segmented CT-PVPs from three radiologists. The teacher model was then used to segment CRLM in the remaining 663 CT-PVPs for training the student model. We used the DICE score and the intraclass correlation coefficient (ICC) to compare the student model’s segmentations and the TTV obtained from these segmentations to those obtained from the merged segmentations. We evaluated the student model in an external test set of 50 CT-PVPs from 35 patients from the Oslo University Hospital and an internal test set of 21 CT-PVPs from 10 patients from the Amsterdam University Medical Centers. Results The model reached a mean DICE score of 0.85 (IQR: 0.05) and 0.83 (IQR: 0.10) on the internal and external test sets, respectively. The ICC between the segmented volumes from the student model and from the merged segmentations was 0.97 on both test sets. Conclusion The developed colorectal cancer liver metastases auto-segmentation model achieved a high DICE score and near-perfect agreement for assessing TTV. Critical relevance statement AI model segments colorectal liver metastases on CT with high performance on two test sets. Accurate segmentation of colorectal liver metastases could facilitate the clinical adoption of total tumor volume as an imaging biomarker for prognosis and treatment response monitoring. Key Points Developed colorectal liver metastases segmentation model to facilitate total tumor volume assessment. Model achieved high performance on internal and external test sets. Model can improve prognostic stratification and treatment planning for colorectal liver metastases. Graphical Abstract
format Article
id doaj-art-978a8ed644cc45b5ae8587799d0eccf7
institution Kabale University
issn 1869-4101
language English
publishDate 2024-11-01
publisher SpringerOpen
record_format Article
series Insights into Imaging
spelling doaj-art-978a8ed644cc45b5ae8587799d0eccf72024-11-24T12:29:10ZengSpringerOpenInsights into Imaging1869-41012024-11-011511910.1186/s13244-024-01820-7Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)Jacqueline I. Bereska0Michiel Zeeuw1Luuk Wagenaar2Håvard Bjørke Jenssen3Nina J. Wesdorp4Delanie van der Meulen5Leonard F. Bereska6Efstratios Gavves7Boris V. Janssen8Marc G. Besselink9Henk A. Marquering10Jan-Hein T. M. van Waesberghe11Davit L. Aghayan12Egidijus Pelanis13Janneke van den Bergh14Irene I. M. Nota15Shira Moos16Gunter Kemmerich17Trygve Syversveen18Finn Kristian Kolrud19Joost Huiskens20Rutger-Jan Swijnenburg21Cornelis J. A. Punt22Jaap Stoker23Bjørn Edwin24Åsmund A. Fretland25Geert Kazemier26Inez M. Verpalen27for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortiumthe Dutch Colorectal Cancer Group Liver Expert PanelCancer Center AmsterdamCancer Center AmsterdamCancer Center AmsterdamOslo University Hospital, Department of Radiology and Nuclear MedicineCancer Center AmsterdamCancer Center AmsterdamUniversity of Amsterdam, Video and Image Sense LabUniversity of Amsterdam, Video and Image Sense LabCancer Center AmsterdamCancer Center AmsterdamCancer Center AmsterdamCancer Center AmsterdamOslo University Hospital, Department of Hepato-Pancreato-Biliary SurgeryOslo University Hospital, Department of Hepato-Pancreato-Biliary SurgeryCancer Center AmsterdamCancer Center AmsterdamCancer Center AmsterdamOslo University Hospital, Department of Radiology and Nuclear MedicineOslo University Hospital, Department of Radiology and Nuclear MedicineOslo University Hospital, Department of Radiology and Nuclear MedicineCancer Center AmsterdamCancer Center AmsterdamAmsterdam UMC, University of Amsterdam, Department of Medical OncologyCancer Center AmsterdamOslo University Hospital, Department of Hepato-Pancreato-Biliary SurgeryOslo University Hospital, Department of Hepato-Pancreato-Biliary SurgeryCancer Center AmsterdamCancer Center AmsterdamAbstract Objectives Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-segmentation model on CT scans, to facilitate the clinical adoption of TTV. Methods We developed an auto-segmentation model to segment CRLM using 783 contrast-enhanced portal venous phase CTs (CT-PVP) of 373 patients. We used a self-learning setup whereby we first trained a teacher model on 99 manually segmented CT-PVPs from three radiologists. The teacher model was then used to segment CRLM in the remaining 663 CT-PVPs for training the student model. We used the DICE score and the intraclass correlation coefficient (ICC) to compare the student model’s segmentations and the TTV obtained from these segmentations to those obtained from the merged segmentations. We evaluated the student model in an external test set of 50 CT-PVPs from 35 patients from the Oslo University Hospital and an internal test set of 21 CT-PVPs from 10 patients from the Amsterdam University Medical Centers. Results The model reached a mean DICE score of 0.85 (IQR: 0.05) and 0.83 (IQR: 0.10) on the internal and external test sets, respectively. The ICC between the segmented volumes from the student model and from the merged segmentations was 0.97 on both test sets. Conclusion The developed colorectal cancer liver metastases auto-segmentation model achieved a high DICE score and near-perfect agreement for assessing TTV. Critical relevance statement AI model segments colorectal liver metastases on CT with high performance on two test sets. Accurate segmentation of colorectal liver metastases could facilitate the clinical adoption of total tumor volume as an imaging biomarker for prognosis and treatment response monitoring. Key Points Developed colorectal liver metastases segmentation model to facilitate total tumor volume assessment. Model achieved high performance on internal and external test sets. Model can improve prognostic stratification and treatment planning for colorectal liver metastases. Graphical Abstracthttps://doi.org/10.1186/s13244-024-01820-7Colorectal neoplasmsLiverBiomarkersTumorArtificial intelligence
spellingShingle Jacqueline I. Bereska
Michiel Zeeuw
Luuk Wagenaar
Håvard Bjørke Jenssen
Nina J. Wesdorp
Delanie van der Meulen
Leonard F. Bereska
Efstratios Gavves
Boris V. Janssen
Marc G. Besselink
Henk A. Marquering
Jan-Hein T. M. van Waesberghe
Davit L. Aghayan
Egidijus Pelanis
Janneke van den Bergh
Irene I. M. Nota
Shira Moos
Gunter Kemmerich
Trygve Syversveen
Finn Kristian Kolrud
Joost Huiskens
Rutger-Jan Swijnenburg
Cornelis J. A. Punt
Jaap Stoker
Bjørn Edwin
Åsmund A. Fretland
Geert Kazemier
Inez M. Verpalen
for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortium
the Dutch Colorectal Cancer Group Liver Expert Panel
Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
Insights into Imaging
Colorectal neoplasms
Liver
Biomarkers
Tumor
Artificial intelligence
title Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
title_full Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
title_fullStr Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
title_full_unstemmed Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
title_short Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA)
title_sort development and external evaluation of a self learning auto segmentation model for colorectal cancer liver metastases assessment coala
topic Colorectal neoplasms
Liver
Biomarkers
Tumor
Artificial intelligence
url https://doi.org/10.1186/s13244-024-01820-7
work_keys_str_mv AT jacquelineibereska developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT michielzeeuw developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT luukwagenaar developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT havardbjørkejenssen developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT ninajwesdorp developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT delanievandermeulen developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT leonardfbereska developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT efstratiosgavves developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT borisvjanssen developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT marcgbesselink developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT henkamarquering developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT janheintmvanwaesberghe developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT davitlaghayan developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT egidijuspelanis developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT jannekevandenbergh developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT ireneimnota developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT shiramoos developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT gunterkemmerich developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT trygvesyversveen developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT finnkristiankolrud developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT joosthuiskens developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT rutgerjanswijnenburg developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT cornelisjapunt developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT jaapstoker developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT bjørnedwin developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT asmundafretland developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT geertkazemier developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT inezmverpalen developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT forthepancreatobiliaryandhepaticartificialintelligenceresearchphairconsortium developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala
AT thedutchcolorectalcancergroupliverexpertpanel developmentandexternalevaluationofaselflearningautosegmentationmodelforcolorectalcancerlivermetastasesassessmentcoala