Enhancing distribution system stability and efficiency through multi‐power supply startup optimization for new energy integration

Abstract This paper addresses the challenge of maximizing power capture from new energy sources, including coal, wind, solar, and hydroelectric power, which often lack sufficient inertia support. This deficiency can lead to frequency instability and cascading failures within the power system. A coop...

Full description

Saved in:
Bibliographic Details
Main Authors: Qinglin Meng, Xinyu Tong, Sheharyar Hussain, Fengzhang Luo, Fei Zhou, Ying He, Lei Liu, Bing Sun, Botong Li
Format: Article
Language:English
Published: Wiley 2024-11-01
Series:IET Generation, Transmission & Distribution
Subjects:
Online Access:https://doi.org/10.1049/gtd2.13299
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This paper addresses the challenge of maximizing power capture from new energy sources, including coal, wind, solar, and hydroelectric power, which often lack sufficient inertia support. This deficiency can lead to frequency instability and cascading failures within the power system. A cooperative optimization model for the start‐up of multiple power supplies, designed to enhance the integration of new energy sources while maintaining system stability is proposed. The model incorporates primary frequency modulation and the intrinsic inertia support capabilities of self‐synchronous voltage source field stations, considering dynamic frequency constraints. Additionally, it employs new energy units with primary frequency modulation to provide inertia support during curtailment, particularly when conventional units cannot meet frequency standards due to existing constraints. Extensive simulations and comparative analyses demonstrate that the proposed model improves new energy utilization by up to 37.5% and reduces operational costs by approximately 16%, enhancing overall operational efficiency in high energy consumption scenarios.
ISSN:1751-8687
1751-8695