A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices

Abstract In this study, the Empirical Mode Decomposition algorithm (EMD) and the Long Short Term Memory neural network (LSTM) are combined into an EMD‐LSTM model, to predict the variation of the >2 MeV electron fluxes 1 day ahead. Input parameters include the Pc5 power, AP, AE, Kp, >0.6 MeV, a...

Full description

Saved in:
Bibliographic Details
Main Authors: H. Zhang, H. R. Xu, G. S. Peng, Y. D. Qian, X. X. Zhang, G. L. Yang, C. Shen, Z. Li, J. W. Yang, Z. Q. Wang, F. He, C. L. Gu, M. B. Zhu
Format: Article
Language:English
Published: Wiley 2022-10-01
Series:Space Weather
Online Access:https://doi.org/10.1029/2022SW003126
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841536420653563904
author H. Zhang
H. R. Xu
G. S. Peng
Y. D. Qian
X. X. Zhang
G. L. Yang
C. Shen
Z. Li
J. W. Yang
Z. Q. Wang
F. He
C. L. Gu
M. B. Zhu
author_facet H. Zhang
H. R. Xu
G. S. Peng
Y. D. Qian
X. X. Zhang
G. L. Yang
C. Shen
Z. Li
J. W. Yang
Z. Q. Wang
F. He
C. L. Gu
M. B. Zhu
author_sort H. Zhang
collection DOAJ
description Abstract In this study, the Empirical Mode Decomposition algorithm (EMD) and the Long Short Term Memory neural network (LSTM) are combined into an EMD‐LSTM model, to predict the variation of the >2 MeV electron fluxes 1 day ahead. Input parameters include the Pc5 power, AP, AE, Kp, >0.6 MeV, and historical electron flux values, are used for predictions. All the time resolution of parameters are daily integral values. As compared the prediction results of the EMD‐LSTM model with other classical prediction models, the results show that the 1 day ahead prediction efficiency of the >2 MeV electron fluxes possesses a prediction efficiency of 0.80, and the highest prediction efficiency can reach 0.93. These results are superior to the prediction accuracy of more previous models. Using two high‐energy electron flux storm events for validation, the results indicate that the performance of the EMD‐LSTM model in the period of the high‐energy electron flux storm is also relatively good, especially for the prediction of high‐energy electron fluxes at extreme points, and the predictions are closer to actual observations.
format Article
id doaj-art-967d1b614e4e4791b68fc2d07056fde1
institution Kabale University
issn 1542-7390
language English
publishDate 2022-10-01
publisher Wiley
record_format Article
series Space Weather
spelling doaj-art-967d1b614e4e4791b68fc2d07056fde12025-01-14T16:30:48ZengWileySpace Weather1542-73902022-10-012010n/an/a10.1029/2022SW003126A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic IndicesH. Zhang0H. R. Xu1G. S. Peng2Y. D. Qian3X. X. Zhang4G. L. Yang5C. Shen6Z. Li7J. W. Yang8Z. Q. Wang9F. He10C. L. Gu11M. B. Zhu12Institute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaInstitute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaInstitute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaInstitute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaKey Laboratory of Space Weather National Center for Space Weather China Meteorological Administration Beijing ChinaKey Laboratory of Space Weather National Center for Space Weather China Meteorological Administration Beijing ChinaHarbin Institute of Technology Shen Zhen ChinaInstitute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaInstitute of Space Weather Nanjing University of Information Science & Technology Nanjing ChinaCollege of Astronautics Nanjing University of Aeronautics and Astronautics Nanjing ChinaNMR Key Laboratory for Polar Science Polar Research Institute of China Shang Hai ChinaBeijing Institute of Applied Meteorology Beijing ChinaBeijing Institute of Applied Meteorology Beijing ChinaAbstract In this study, the Empirical Mode Decomposition algorithm (EMD) and the Long Short Term Memory neural network (LSTM) are combined into an EMD‐LSTM model, to predict the variation of the >2 MeV electron fluxes 1 day ahead. Input parameters include the Pc5 power, AP, AE, Kp, >0.6 MeV, and historical electron flux values, are used for predictions. All the time resolution of parameters are daily integral values. As compared the prediction results of the EMD‐LSTM model with other classical prediction models, the results show that the 1 day ahead prediction efficiency of the >2 MeV electron fluxes possesses a prediction efficiency of 0.80, and the highest prediction efficiency can reach 0.93. These results are superior to the prediction accuracy of more previous models. Using two high‐energy electron flux storm events for validation, the results indicate that the performance of the EMD‐LSTM model in the period of the high‐energy electron flux storm is also relatively good, especially for the prediction of high‐energy electron fluxes at extreme points, and the predictions are closer to actual observations.https://doi.org/10.1029/2022SW003126
spellingShingle H. Zhang
H. R. Xu
G. S. Peng
Y. D. Qian
X. X. Zhang
G. L. Yang
C. Shen
Z. Li
J. W. Yang
Z. Q. Wang
F. He
C. L. Gu
M. B. Zhu
A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
Space Weather
title A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
title_full A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
title_fullStr A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
title_full_unstemmed A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
title_short A Prediction Model of Relativistic Electrons at Geostationary Orbit Using the EMD‐LSTM Network and Geomagnetic Indices
title_sort prediction model of relativistic electrons at geostationary orbit using the emd lstm network and geomagnetic indices
url https://doi.org/10.1029/2022SW003126
work_keys_str_mv AT hzhang apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT hrxu apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT gspeng apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT ydqian apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT xxzhang apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT glyang apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT cshen apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT zli apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT jwyang apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT zqwang apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT fhe apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT clgu apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT mbzhu apredictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT hzhang predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT hrxu predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT gspeng predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT ydqian predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT xxzhang predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT glyang predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT cshen predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT zli predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT jwyang predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT zqwang predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT fhe predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT clgu predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices
AT mbzhu predictionmodelofrelativisticelectronsatgeostationaryorbitusingtheemdlstmnetworkandgeomagneticindices