Generalized Predictive Control for a Single-Phase, Three-Level Voltage Source Inverter

In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set (FCS) and continuous contro...

Full description

Saved in:
Bibliographic Details
Main Authors: Diego Naunay, Paul Ayala, Josue Andino, Wilmar Martinez, Diego Arcos-Aviles
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/10/2541
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set (FCS) and continuous control set (CCS). The FCS–MPC has been studied more in regard to these two types of control due to its easy and intuitive implementation. However, FCS–MPC has some drawbacks, such as the exponential growth of the computational burden as the prediction horizon increases and, in some cases, a variable frequency. In contrast, generalized predictive control (GPC), part of CCS–MPC, offers significant advantages. It enables the use of a longer prediction horizon without increasing the computational burden in regard to its implementation, which has practical implications for the efficiency and performance of power converters. This paper presents the design of GPC applied to single-phase multilevel voltage source inverters, highlighting its advantages over FCS–MPC. The controller is optimized offline, significantly reducing the computational cost of implementation. Moreover, the controller is tested in regard to R, RL, and nonlinear loads. Finally, the validation results using a medium-performance controller and a Hardware-in-the-Loop device highlight the improved behavior of the proposed GPC, maintaining a harmonic distortion of less than 1.2% for R and RL loads.
ISSN:1996-1073