Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx

Perovskites are organic-inorganic compounds with a crystal structure that revolutionize many optoelectronic applications, especially solar cells. The CsPbBr3−xIx, a perovskite, has garnered significant attention due to its tunable band gap and excellent photovoltaic properties. In this theoretical s...

Full description

Saved in:
Bibliographic Details
Main Author: Veysel Çelik
Format: Article
Language:English
Published: Sakarya University 2023-12-01
Series:Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/3034740
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perovskites are organic-inorganic compounds with a crystal structure that revolutionize many optoelectronic applications, especially solar cells. The CsPbBr3−xIx, a perovskite, has garnered significant attention due to its tunable band gap and excellent photovoltaic properties. In this theoretical study, the structural, electronic, and optical properties of CsPbBr3−xIx are investigated through density functional theory calculations. The calculations reveal that the substitution of Br with I leads to a significant reduction in the band gap of CsPbBr3−xIx, resulting in improved light absorption properties. The obtained data show that the coexistence of Br and I ions in the structure creates an energy level similar to the shallow energy levels caused by doping at the R symmetry point in the band structure.
ISSN:2147-835X