Improving the Long-Range Intramolecular Proton Transfer—Further Molecular Design of the Successful Molecular Switch 8-(Benzo[d]thiazol-2-yl)quinolin-7-ol (HQBT)
Previously, we have described a successful molecular switch (8-(benzo[d]thiazol-2-yl)quinolin-7-ol), working on the basis of long-range proton transfer. Bearing in mind that its switching efficiency in low-polarity aprotic solvents is not sufficient, in the current communication, we investigate in d...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Molecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1420-3049/30/9/1935 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Previously, we have described a successful molecular switch (8-(benzo[d]thiazol-2-yl)quinolin-7-ol), working on the basis of long-range proton transfer. Bearing in mind that its switching efficiency in low-polarity aprotic solvents is not sufficient, in the current communication, we investigate in detail the effect of the substitution in the benzothiazole ring. By using the DFT approach, the ground-state stability of the tautomeric forms, involved in the switching process, is modeled with the aim of finding conditions where clean switching could be possible in variety of aprotic solvents. The results indicate that the substitution with electron-acceptor substituents could increase the switching efficiency, but the overall improvement depends on the positions and electronic effect of the particular substituent. |
|---|---|
| ISSN: | 1420-3049 |