Improving the Long-Range Intramolecular Proton Transfer—Further Molecular Design of the Successful Molecular Switch 8-(Benzo[d]thiazol-2-yl)quinolin-7-ol (HQBT)

Previously, we have described a successful molecular switch (8-(benzo[d]thiazol-2-yl)quinolin-7-ol), working on the basis of long-range proton transfer. Bearing in mind that its switching efficiency in low-polarity aprotic solvents is not sufficient, in the current communication, we investigate in d...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniela Nedeltcheva-Antonova, Liudmil Antonov
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/9/1935
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previously, we have described a successful molecular switch (8-(benzo[d]thiazol-2-yl)quinolin-7-ol), working on the basis of long-range proton transfer. Bearing in mind that its switching efficiency in low-polarity aprotic solvents is not sufficient, in the current communication, we investigate in detail the effect of the substitution in the benzothiazole ring. By using the DFT approach, the ground-state stability of the tautomeric forms, involved in the switching process, is modeled with the aim of finding conditions where clean switching could be possible in variety of aprotic solvents. The results indicate that the substitution with electron-acceptor substituents could increase the switching efficiency, but the overall improvement depends on the positions and electronic effect of the particular substituent.
ISSN:1420-3049