The Role of Solvent Environment on the Optical Behavior of Chemically Synthesized Silicon Nanoparticles

Silicon nanoparticles (Si-NPs) were prepared by solution-based chemical etching method. Optical characteristics of the as-prepared Si-NPs were investigated in different polar and nonpolar organic solvents. The emission and absorption properties of Si-NPs were tuned by altering the environment (solve...

Full description

Saved in:
Bibliographic Details
Main Authors: Rawabi M. Al Mohaimeed, Anees A. Ansari, Abdullah Aldwayyan
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2018/6870645
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon nanoparticles (Si-NPs) were prepared by solution-based chemical etching method. Optical characteristics of the as-prepared Si-NPs were investigated in different polar and nonpolar organic solvents. The emission and absorption properties of Si-NPs were tuned by altering the environment (solvents). The variation in absorption coefficient was observed because of the solvent interaction nature of Si-NPs. Si-NPs in polar aprotic and nonpolar solvents manifested good luminescence under UV excitation. PL intensities were observed to be depending on etched cross-section area on wafer surface. The results show a linear dependence of the refractive index (n) on wavelength (λ). The nature of solvents altered the luminescence efficiency of Si-NPs when examining under UV lamp. The emission and absorption properties of Si-NPs were tuned by altering the environment (solvents) through electrostatic interaction of various organic solvents with the Si-NPs. The band shapes of the Si-NPs show remarkable changes in passing from noncoordinating solvent (chloroform) to various coordinating solvents, which was the result of change in the environment around Si-NPs in various solutions.
ISSN:2314-4920
2314-4939