Scalable data assimilation with message passing

Data assimilation is a core component of numerical weather prediction systems. The large quantity of data processed during assimilation requires the computation to be distributed across increasingly many compute nodes; yet, existing approaches suffer from synchronization overhead in this setting. In...

Full description

Saved in:
Bibliographic Details
Main Authors: Oscar Key, So Takao, Daniel Giles, Marc Peter Deisenroth
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Environmental Data Science
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2634460224000475/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data assimilation is a core component of numerical weather prediction systems. The large quantity of data processed during assimilation requires the computation to be distributed across increasingly many compute nodes; yet, existing approaches suffer from synchronization overhead in this setting. In this article, we exploit the formulation of data assimilation as a Bayesian inference problem and apply a message-passing algorithm to solve the spatial inference problem. Since message passing is inherently based on local computations, this approach lends itself to parallel and distributed computation. In combination with a GPU-accelerated implementation, we can scale the algorithm to very large grid sizes while retaining good accuracy and compute and memory requirements.
ISSN:2634-4602