A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values

Many variations of the multiple zeta values have been found to play important roles in different branches of mathematics and theoretical physics in recent years, such as the cyclotomic/color version, which appears prominently in the computation of Feynman integrals. In this paper, we introduce a tri...

Full description

Saved in:
Bibliographic Details
Main Authors: Ende Pan, Xin Lin, Ce Xu, Jianqiang Zhao
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3771
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846124148394295296
author Ende Pan
Xin Lin
Ce Xu
Jianqiang Zhao
author_facet Ende Pan
Xin Lin
Ce Xu
Jianqiang Zhao
author_sort Ende Pan
collection DOAJ
description Many variations of the multiple zeta values have been found to play important roles in different branches of mathematics and theoretical physics in recent years, such as the cyclotomic/color version, which appears prominently in the computation of Feynman integrals. In this paper, we introduce a trigonometric variant of the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-function (called the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>ψ</mi><mo>˜</mo></mover></semantics></math></inline-formula>-function) and discover some nice properties similar to those for ordinary Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-values using the method of iterated integrals, which was first studied systematically by K.T. Chen in the 1960s. In particular, we establish some duality formulas involving the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>ψ</mi><mo>˜</mo></mover></semantics></math></inline-formula>-function and alternating multiple <i>T</i>-values by adapting Yamamoto’s graphical representation method for computing special types of iterated integrals.
format Article
id doaj-art-92f3a911b36a470f8c99b740a2d65412
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-92f3a911b36a470f8c99b740a2d654122024-12-13T16:27:41ZengMDPI AGMathematics2227-73902024-11-011223377110.3390/math12233771A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-ValuesEnde Pan0Xin Lin1Ce Xu2Jianqiang Zhao3College of Teacher Education, Quzhou University, Quzhou 324022, ChinaSchool of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, ChinaSchool of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, ChinaDepartment of Mathematics, The Bishop’s School, La Jolla, CA 92037, USAMany variations of the multiple zeta values have been found to play important roles in different branches of mathematics and theoretical physics in recent years, such as the cyclotomic/color version, which appears prominently in the computation of Feynman integrals. In this paper, we introduce a trigonometric variant of the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-function (called the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>ψ</mi><mo>˜</mo></mover></semantics></math></inline-formula>-function) and discover some nice properties similar to those for ordinary Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula>-values using the method of iterated integrals, which was first studied systematically by K.T. Chen in the 1960s. In particular, we establish some duality formulas involving the Kaneko–Tsumura <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>ψ</mi><mo>˜</mo></mover></semantics></math></inline-formula>-function and alternating multiple <i>T</i>-values by adapting Yamamoto’s graphical representation method for computing special types of iterated integrals.https://www.mdpi.com/2227-7390/12/23/3771trigonometric-variantKaneko–Tsumura <i>ψ</i>-function(alternating) multiple <i>T</i>-valuesiterated integralsduality formula
spellingShingle Ende Pan
Xin Lin
Ce Xu
Jianqiang Zhao
A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
Mathematics
trigonometric-variant
Kaneko–Tsumura <i>ψ</i>-function
(alternating) multiple <i>T</i>-values
iterated integrals
duality formula
title A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
title_full A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
title_fullStr A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
title_full_unstemmed A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
title_short A Trigonometric Variant of Kaneko–Tsumura <i>ψ</i>-Values
title_sort trigonometric variant of kaneko tsumura i ψ i values
topic trigonometric-variant
Kaneko–Tsumura <i>ψ</i>-function
(alternating) multiple <i>T</i>-values
iterated integrals
duality formula
url https://www.mdpi.com/2227-7390/12/23/3771
work_keys_str_mv AT endepan atrigonometricvariantofkanekotsumuraipsivalues
AT xinlin atrigonometricvariantofkanekotsumuraipsivalues
AT cexu atrigonometricvariantofkanekotsumuraipsivalues
AT jianqiangzhao atrigonometricvariantofkanekotsumuraipsivalues
AT endepan trigonometricvariantofkanekotsumuraipsivalues
AT xinlin trigonometricvariantofkanekotsumuraipsivalues
AT cexu trigonometricvariantofkanekotsumuraipsivalues
AT jianqiangzhao trigonometricvariantofkanekotsumuraipsivalues