Advancing deep learning for expressive music composition and performance modeling
Abstract The pursuit of expressive and human-like music generation remains a significant challenge in the field of artificial intelligence (AI). While deep learning has advanced AI music composition and transcription, current models often struggle with long-term structural coherence and emotional nu...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-13064-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The pursuit of expressive and human-like music generation remains a significant challenge in the field of artificial intelligence (AI). While deep learning has advanced AI music composition and transcription, current models often struggle with long-term structural coherence and emotional nuance. This study presents a comparative analysis of three leading deep learning architectures: Long Short-Term Memory (LSTM) networks, Transformer models, and Generative Adversarial Networks (GANs), for AI-generated music composition and transcription using the MAESTRO dataset. Our key innovation lies in the integration of a dual evaluation framework that combines objective metrics (perplexity, harmonic consistency, and rhythmic entropy) with subjective human evaluations via a Mean Opinion Score (MOS) study involving 50 listeners. The Transformer model achieved the best overall performance (perplexity: 2.87, harmonic consistency: 79.4%, MOS: 4.3), indicating its superior ability to produce musically rich and expressive outputs. However, human compositions remained highest in perceptual quality (MOS: 4.8). Our findings provide a benchmarking foundation for future AI music systems and emphasize the need for emotion-aware modeling, real-time human-AI collaboration, and reinforcement learning to bridge the gap between machine-generated and human-performed music. |
|---|---|
| ISSN: | 2045-2322 |