Improved spectral clustering algorithm and its application in MCI detection

In order to detect mild cognitive impairment (MCI) using functional magnetic resonance imaging (fMRI),a method based on fMRI clustering was proposed fMRI data were clustered to obtain the blood oxygen level dependence( BOLD) change model of MCI patients,then abnormal patterns were used to detect dis...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie XIANG, Dong-qin ZHAO
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2015-04-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2015181/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to detect mild cognitive impairment (MCI) using functional magnetic resonance imaging (fMRI),a method based on fMRI clustering was proposed fMRI data were clustered to obtain the blood oxygen level dependence( BOLD) change model of MCI patients,then abnormal patterns were used to detect disease.The traditional spectral clustering algorithm needs to calculate all of the eigenvalue and eigenvector,so time and space complexity is higher.An improved spectral clustering method was proposed which modified the similar matrix construction method and the setting method of σ and k,and then this method was applied to clustering and detection of MCI patients.To verify the performance of the proposed method,the comparison of the clustering result,classification accuracy using traditional algorithm and Nyström is also done.The comparative experimental results show that the proposed method can get BOLD pattern more accurately,the accuracy of MCI detection is higher than the other two algorithms,and the time and space complexity are less than the traditional algorithm.
ISSN:1000-436X