Advancing sensitivity with laser-scribed graphene interdigitated electrodes in water quality monitoring

Conventional methods for monitoring water quality are often time-consuming, expensive, and lack sensitivity, making it difficult to detect contaminants before they enter the environment. Therefore, it is essential to develop sensing platforms that address these issues and that are capable of perform...

Full description

Saved in:
Bibliographic Details
Main Authors: Ceren Durmus, Abdullah Bukhamsin, José Ilton de Oliveira Filho, Khaled Nabil Salama
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Sensing and Bio-Sensing Research
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214180424001132
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conventional methods for monitoring water quality are often time-consuming, expensive, and lack sensitivity, making it difficult to detect contaminants before they enter the environment. Therefore, it is essential to develop sensing platforms that address these issues and that are capable of performing on-site detection. As such, in this study, we developed an electrochemical sensing platform for detecting pharmaceutical pollutants in water, particularly paracetamol (PCM) and acetylsalicylic acid (ASP). By minimizing the gap distance between the working and auxiliary electrodes of laser-scribed graphene interdigitated electrodes (LSG-IDEs), the sensitivity of the sensors was improved. The developed platform was compared to a standard LSGE design, and the LSG-IDEs achieved an 18.6-fold and 70-fold improvement in detection limits for PCM and ASP, respectively. The system was tested with real wastewater samples spiked with ASP and PCM, demonstrating its effectiveness in practical scenarios. Additionally, the system was successfully integrated with an on-site detection device, demonstrating its potential for real-time, portable water quality monitoring. The high sensitivity and low-cost of LSG-IDEs make them a suitable option for the monitoring of water quality and protecting public health.
ISSN:2214-1804