NAS-CRE: Neural Architecture Search for Context-Based Relation Extraction

Relation extraction, a crucial task in natural language processing (NLP) for constructing knowledge graphs, entails extracting relational semantics between pairs of entities within a sentence. Given the intricacy of language, a single sentence often encompasses multiple entities that mutually influe...

Full description

Saved in:
Bibliographic Details
Main Authors: Rongen Yan, Dongmei Li, Yan Wu, Depeng Dang, Ye Tao, Shaofei Wang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/23/10960
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relation extraction, a crucial task in natural language processing (NLP) for constructing knowledge graphs, entails extracting relational semantics between pairs of entities within a sentence. Given the intricacy of language, a single sentence often encompasses multiple entities that mutually influence one another. Recently, various iterations of recurrent neural networks (RNNs) have been introduced into relation extraction tasks, where the efficacy of neural network structures directly influences task performance. However, many neural networks necessitate manual determination of optimal parameters and network architectures, resulting in limited generalization capabilities for specific tasks. In this paper, we formally define the context-based relation extraction problem and propose a solution utilizing neural architecture search (NAS) to optimize RNN. Specifically, NAS employs an RNN controller to delineate an RNN cell, yielding an optimal structure to represent all relationships, thereby aiding in extracting relationships between target entities. Additionally, to enhance relation extraction performance, we leverage the XLNet pretrained model to comprehensively capture the semantic features of the sentence. Extensive experiments conducted on a real-world dataset containing words with multiple relationships demonstrate that our proposed method significantly enhances micro-F1 scores compared to state-of-the-art baselines.
ISSN:2076-3417