Research on crowd flows prediction model for 5G demand

The deployment and planning for ultra-dense base stations,multidimensional resource management,and on-off switching in 5G networks rely on the accurate prediction of crowd flows in the specific areas.A deep spatial-temporal network for regional crowd flows prediction was proposed,by using the spatia...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheng HU, Hao YUAN, Xinning ZHU, Wanli NI
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2019-02-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2019042/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The deployment and planning for ultra-dense base stations,multidimensional resource management,and on-off switching in 5G networks rely on the accurate prediction of crowd flows in the specific areas.A deep spatial-temporal network for regional crowd flows prediction was proposed,by using the spatial-temporal data acquired from mobile networks.A deep learning based method was used to model the spatial-temporal dependencies with different scales.External factors were combined further to predict citywide crowd flows.Only data from local regions was applied to model the closeness of properties of the crowd flows,in order to reduce the requirements for transmitting the globe data in real time.It is of importance for improving the performance of 5G networks.The proposed model was evaluated based on call detail record data set.The experiment results show that the proposed model outperforms the other prediction models in term of the prediction precision.
ISSN:1000-436X