On quasiconformal extension of harmonic mappings with nonzero pole

Let $\Sigma _H^k(p)$ be the class of sense-preserving univalent harmonic mappings defined on the open unit disk $\mathbb{D}$ of the complex plane with a simple pole at $z=p \in (0,1)$ that have $k$-quasiconformal extensions ($0\le k<1$) to the extended complex plane. We first derive a sufficient...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhowmik, Bappaditya, Satpati, Goutam
Format: Article
Language:English
Published: Académie des sciences 2025-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.686/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $\Sigma _H^k(p)$ be the class of sense-preserving univalent harmonic mappings defined on the open unit disk $\mathbb{D}$ of the complex plane with a simple pole at $z=p \in (0,1)$ that have $k$-quasiconformal extensions ($0\le k<1$) to the extended complex plane. We first derive a sufficient condition for harmonic mappings defined on $\mathbb{D}$ with pole at $z=p\in (0,1)$ to belong in the class $\Sigma _H^k(p)$. As a consequence of this, we derive a convolution result involving functions in $\smash{\Sigma _H^{k_i}(p)}$, $0\le k_i<1$ for $i=1,2$. We also consider harmonic mappings with a nonzero pole defined on a linearly connected domain $\Omega \subset \mathbb{D}$ and prove criteria for univalence and quasiconformal extensions for such mappings.
ISSN:1778-3569