Learning patterns of HIV-1 resistance to broadly neutralizing antibodies with reduced subtype bias using multi-task learning.

The ability to predict HIV-1 resistance to broadly neutralizing antibodies (bnAbs) will increase bnAb therapeutic benefits. Machine learning is a powerful approach for such prediction. One challenge is that some HIV-1 subtypes in currently available training datasets are underrepresented, which like...

Full description

Saved in:
Bibliographic Details
Main Authors: Aime Bienfait Igiraneza, Panagiota Zacharopoulou, Robert Hinch, Chris Wymant, Lucie Abeler-Dörner, John Frater, Christophe Fraser
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-11-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012618
Tags: Add Tag
No Tags, Be the first to tag this record!