基于XGBoost的冷水机组不平衡数据故障诊断

The chiller operating data has unbalanced,non-Gaussian,non-linear,noise-containing characteristics,which poses a challenge for data-based chiller fault diagnosis.Aiming at these characteristics,a chiller fault diagnosis method based on Minority Oversampling under Local Area Density and e Xtreme Grad...

Full description

Saved in:
Bibliographic Details
Main Authors: 潘进, 丁强, 江爱朋, 陈越增, 夏宇栋
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Strength 2021-01-01
Series:Jixie qiangdu
Online Access:http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.004
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841535875208445952
author 潘进
丁强
江爱朋
陈越增
夏宇栋
author_facet 潘进
丁强
江爱朋
陈越增
夏宇栋
author_sort 潘进
collection DOAJ
description The chiller operating data has unbalanced,non-Gaussian,non-linear,noise-containing characteristics,which poses a challenge for data-based chiller fault diagnosis.Aiming at these characteristics,a chiller fault diagnosis method based on Minority Oversampling under Local Area Density and e Xtreme Gradient Boosting is proposed to chiller fault diagnosis to overcome sample distribution imbalance.Introduce cost-sensitive learning theory to increase the recall rate of important faults.The simulations of seven fault monitoring data commonly used in centrifugal chillers show that XGBoost can better classify chiller status monitoring data compared to the control group.The MOLAD-XGBoost composite model can effectively deal with data imbalance problems; Cost sensitive weights can effectively increase the recall rate for critical failures.
format Article
id doaj-art-8f0aaff6839a48128b7aa6b39f379d2f
institution Kabale University
issn 1001-9669
language zho
publishDate 2021-01-01
publisher Editorial Office of Journal of Mechanical Strength
record_format Article
series Jixie qiangdu
spelling doaj-art-8f0aaff6839a48128b7aa6b39f379d2f2025-01-15T02:26:30ZzhoEditorial Office of Journal of Mechanical StrengthJixie qiangdu1001-96692021-01-01273330609714基于XGBoost的冷水机组不平衡数据故障诊断潘进丁强江爱朋陈越增夏宇栋The chiller operating data has unbalanced,non-Gaussian,non-linear,noise-containing characteristics,which poses a challenge for data-based chiller fault diagnosis.Aiming at these characteristics,a chiller fault diagnosis method based on Minority Oversampling under Local Area Density and e Xtreme Gradient Boosting is proposed to chiller fault diagnosis to overcome sample distribution imbalance.Introduce cost-sensitive learning theory to increase the recall rate of important faults.The simulations of seven fault monitoring data commonly used in centrifugal chillers show that XGBoost can better classify chiller status monitoring data compared to the control group.The MOLAD-XGBoost composite model can effectively deal with data imbalance problems; Cost sensitive weights can effectively increase the recall rate for critical failures.http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.004
spellingShingle 潘进
丁强
江爱朋
陈越增
夏宇栋
基于XGBoost的冷水机组不平衡数据故障诊断
Jixie qiangdu
title 基于XGBoost的冷水机组不平衡数据故障诊断
title_full 基于XGBoost的冷水机组不平衡数据故障诊断
title_fullStr 基于XGBoost的冷水机组不平衡数据故障诊断
title_full_unstemmed 基于XGBoost的冷水机组不平衡数据故障诊断
title_short 基于XGBoost的冷水机组不平衡数据故障诊断
title_sort 基于xgboost的冷水机组不平衡数据故障诊断
url http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.004
work_keys_str_mv AT pānjìn jīyúxgboostdelěngshuǐjīzǔbùpínghéngshùjùgùzhàngzhěnduàn
AT dīngqiáng jīyúxgboostdelěngshuǐjīzǔbùpínghéngshùjùgùzhàngzhěnduàn
AT jiāngàipéng jīyúxgboostdelěngshuǐjīzǔbùpínghéngshùjùgùzhàngzhěnduàn
AT chényuèzēng jīyúxgboostdelěngshuǐjīzǔbùpínghéngshùjùgùzhàngzhěnduàn
AT xiàyǔdòng jīyúxgboostdelěngshuǐjīzǔbùpínghéngshùjùgùzhàngzhěnduàn