Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities

We deal with the existence and multiplicity of solutions for the periodic boundary value problem x″(t)+a(t)x(t)=λg(t)f(x)+c(t), x(0)=x(T), x′(0)=x′(T), where λ is a positive parameter. The function f:(0,∞)→(0,∞) is allowed to be singular, and the related Green's function is nonnegative and can...

Full description

Saved in:
Bibliographic Details
Main Authors: Alberto Cabada, José Ángel Cid
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2011/545264
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841524471512432640
author Alberto Cabada
José Ángel Cid
author_facet Alberto Cabada
José Ángel Cid
author_sort Alberto Cabada
collection DOAJ
description We deal with the existence and multiplicity of solutions for the periodic boundary value problem x″(t)+a(t)x(t)=λg(t)f(x)+c(t), x(0)=x(T), x′(0)=x′(T), where λ is a positive parameter. The function f:(0,∞)→(0,∞) is allowed to be singular, and the related Green's function is nonnegative and can vanish at some points.
format Article
id doaj-art-8e65b7b119c9434f94e27a46a9aafeb2
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-8e65b7b119c9434f94e27a46a9aafeb22025-02-03T05:53:05ZengWileyAbstract and Applied Analysis1085-33751687-04092011-01-01201110.1155/2011/545264545264Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and SingularitiesAlberto Cabada0José Ángel Cid1Departamento de Análise Matemática, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, SpainDepartamento de Matemáticas, Universidad de Jaén, Campus Las Lagunillas, Ed. B3, 23071 Jaén, SpainWe deal with the existence and multiplicity of solutions for the periodic boundary value problem x″(t)+a(t)x(t)=λg(t)f(x)+c(t), x(0)=x(T), x′(0)=x′(T), where λ is a positive parameter. The function f:(0,∞)→(0,∞) is allowed to be singular, and the related Green's function is nonnegative and can vanish at some points.http://dx.doi.org/10.1155/2011/545264
spellingShingle Alberto Cabada
José Ángel Cid
Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
Abstract and Applied Analysis
title Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
title_full Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
title_fullStr Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
title_full_unstemmed Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
title_short Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities
title_sort existence and multiplicity of solutions for a periodic hill s equation with parametric dependence and singularities
url http://dx.doi.org/10.1155/2011/545264
work_keys_str_mv AT albertocabada existenceandmultiplicityofsolutionsforaperiodichillsequationwithparametricdependenceandsingularities
AT joseangelcid existenceandmultiplicityofsolutionsforaperiodichillsequationwithparametricdependenceandsingularities