MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy

The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at...

Full description

Saved in:
Bibliographic Details
Main Authors: Mengting Ju, Xin Wang, Tucker Jones, Ivana Barišić, Themiya Nanayakkara, Kevin Bundy, Claude-André Faucher-Giguère, Shuai Feng, Karl Glazebrook, Alaina Henry, Matthew A. Malkan, Danail Obreschkow, Namrata Roy, Ryan L. Sanders, Xunda Sun, Tommaso Treu, Qianqiao Zhou
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astrophysical Journal Letters
Subjects:
Online Access:https://doi.org/10.3847/2041-8213/ada150
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841551080983363584
author Mengting Ju
Xin Wang
Tucker Jones
Ivana Barišić
Themiya Nanayakkara
Kevin Bundy
Claude-André Faucher-Giguère
Shuai Feng
Karl Glazebrook
Alaina Henry
Matthew A. Malkan
Danail Obreschkow
Namrata Roy
Ryan L. Sanders
Xunda Sun
Tommaso Treu
Qianqiao Zhou
author_facet Mengting Ju
Xin Wang
Tucker Jones
Ivana Barišić
Themiya Nanayakkara
Kevin Bundy
Claude-André Faucher-Giguère
Shuai Feng
Karl Glazebrook
Alaina Henry
Matthew A. Malkan
Danail Obreschkow
Namrata Roy
Ryan L. Sanders
Xunda Sun
Tommaso Treu
Qianqiao Zhou
author_sort Mengting Ju
collection DOAJ
description The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲  z  ≲ 1.7 from the MSA-3D survey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution of R  ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc ^−1 . Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient at z  ∼ 1 with small intrinsic scatter of 0.02 dex kpc ^−1 . Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.
format Article
id doaj-art-8db15d14fff5444d9e2022096d1cc653
institution Kabale University
issn 2041-8205
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Letters
spelling doaj-art-8db15d14fff5444d9e2022096d1cc6532025-01-09T16:55:01ZengIOP PublishingThe Astrophysical Journal Letters2041-82052025-01-019782L3910.3847/2041-8213/ada150MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping SpectroscopyMengting Ju0https://orcid.org/0000-0002-5815-2387Xin Wang1https://orcid.org/0000-0002-9373-3865Tucker Jones2https://orcid.org/0000-0001-5860-3419Ivana Barišić3https://orcid.org/0000-0001-6371-6274Themiya Nanayakkara4https://orcid.org/0000-0003-2804-0648Kevin Bundy5https://orcid.org/0000-0001-9742-3138Claude-André Faucher-Giguère6https://orcid.org/0000-0002-4900-6628Shuai Feng7https://orcid.org/0000-0002-9767-9237Karl Glazebrook8https://orcid.org/0000-0002-3254-9044Alaina Henry9https://orcid.org/0000-0002-6586-4446Matthew A. Malkan10https://orcid.org/0000-0001-6919-1237Danail Obreschkow11https://orcid.org/0000-0002-1527-0762Namrata Roy12https://orcid.org/0000-0002-4430-8846Ryan L. Sanders13https://orcid.org/0000-0003-4792-9119Xunda Sun14https://orcid.org/0009-0005-8170-5153Tommaso Treu15https://orcid.org/0000-0002-8460-0390Qianqiao Zhou16https://orcid.org/0009-0006-1255-9567School of Astronomy and Space Science, University of Chinese Academy of Sciences (UCAS) , Beijing 100049, People’s Republic of China ; jumengting@ucas.ac.cn, xwang@ucas.ac.cnSchool of Astronomy and Space Science, University of Chinese Academy of Sciences (UCAS) , Beijing 100049, People’s Republic of China ; jumengting@ucas.ac.cn, xwang@ucas.ac.cn; National Astronomical Observatories, Chinese Academy of Sciences , Beijing 100101, People’s Republic of China; Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University , Beijing 102206, People’s Republic of ChinaDepartment of Physics and Astronomy, University of California , Davis, 1 Shields Avenue, Davis, CA 95616, USADepartment of Physics and Astronomy, University of California , Davis, 1 Shields Avenue, Davis, CA 95616, USACentre for Astrophysics and Supercomputing, Swinburne University of Technology , Hawthorn, VIC 3122, AustraliaUCO/Lick Observatory, University of California , Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USADepartment of Physics & Astronomy and CIERA, Northwestern University , 1800 Sherman Avenue, Evanston, IL 60201, USACollege of Physics, Hebei Normal University , 20 South Erhuan Road, Shijiazhuang, 050024, People’s Republic of China; Hebei Key Laboratory of Photophysics Research and Application , 050024 Shijiazhuang, People’s Republic of ChinaCentre for Astrophysics and Supercomputing, Swinburne University of Technology , Hawthorn, VIC 3122, AustraliaSpace Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218, USADepartment of Physics and Astronomy, University of California , Los Angeles, CA 90095-1547, USAInternational Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia , Perth, WA 6009, Australia; Australian Research Council , ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), AustraliaCenter for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University , Baltimore, MD, 21218, USADepartment of Physics and Astronomy, University of Kentucky , 505 Rose Street, Lexington, KY 40506, USA; Department of Physics and Astronomy, University of California , Davis, One Shields Avenue, Davis, CA 95616, USASchool of Astronomy and Space Science, University of Chinese Academy of Sciences (UCAS) , Beijing 100049, People’s Republic of China ; jumengting@ucas.ac.cn, xwang@ucas.ac.cnDepartment of Physics and Astronomy, University of California , Los Angeles, CA 90095-1547, USASchool of Astronomy and Space Science, University of Chinese Academy of Sciences (UCAS) , Beijing 100049, People’s Republic of China ; jumengting@ucas.ac.cn, xwang@ucas.ac.cnThe radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲  z  ≲ 1.7 from the MSA-3D survey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution of R  ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc ^−1 . Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient at z  ∼ 1 with small intrinsic scatter of 0.02 dex kpc ^−1 . Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.https://doi.org/10.3847/2041-8213/ada150High-redshift galaxiesStar formationGalactic abundancesGalaxy kinematics
spellingShingle Mengting Ju
Xin Wang
Tucker Jones
Ivana Barišić
Themiya Nanayakkara
Kevin Bundy
Claude-André Faucher-Giguère
Shuai Feng
Karl Glazebrook
Alaina Henry
Matthew A. Malkan
Danail Obreschkow
Namrata Roy
Ryan L. Sanders
Xunda Sun
Tommaso Treu
Qianqiao Zhou
MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
The Astrophysical Journal Letters
High-redshift galaxies
Star formation
Galactic abundances
Galaxy kinematics
title MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
title_full MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
title_fullStr MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
title_full_unstemmed MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
title_short MSA-3D: Metallicity Gradients in Galaxies at z ∼ 1 with JWST/NIRSpec Slit-stepping Spectroscopy
title_sort msa 3d metallicity gradients in galaxies at z ∼ 1 with jwst nirspec slit stepping spectroscopy
topic High-redshift galaxies
Star formation
Galactic abundances
Galaxy kinematics
url https://doi.org/10.3847/2041-8213/ada150
work_keys_str_mv AT mengtingju msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT xinwang msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT tuckerjones msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT ivanabarisic msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT themiyananayakkara msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT kevinbundy msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT claudeandrefauchergiguere msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT shuaifeng msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT karlglazebrook msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT alainahenry msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT matthewamalkan msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT danailobreschkow msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT namrataroy msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT ryanlsanders msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT xundasun msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT tommasotreu msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy
AT qianqiaozhou msa3dmetallicitygradientsingalaxiesatz1withjwstnirspecslitsteppingspectroscopy