Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences

In this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,q)-Lucas sequences. Generating functions and...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasemin Taşyurdu, Naime Şeyda Türkoğlu
Format: Article
Language:English
Published: Sakarya University 2023-02-01
Series:Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/2556896
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846111412548534272
author Yasemin Taşyurdu
Naime Şeyda Türkoğlu
author_facet Yasemin Taşyurdu
Naime Şeyda Türkoğlu
author_sort Yasemin Taşyurdu
collection DOAJ
description In this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,q)-Lucas sequences. Generating functions and Binet formulas that allow us to calculate the nth terms of these sequences are given and the convergence properties of their consecutive terms are examined. Also, we prove some fundamental identities of bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences conform to the well-known properties of Fibonacci and Lucas sequences.
format Article
id doaj-art-8c4a2a7899df4b6a9c7fc5c82c283531
institution Kabale University
issn 2147-835X
language English
publishDate 2023-02-01
publisher Sakarya University
record_format Article
series Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
spelling doaj-art-8c4a2a7899df4b6a9c7fc5c82c2835312024-12-23T08:14:25ZengSakarya UniversitySakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi2147-835X2023-02-0127111310.16984/saufenbilder.114861828Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas SequencesYasemin Taşyurdu0https://orcid.org/0000-0002-9011-8269Naime Şeyda Türkoğlu1https://orcid.org/0000-0003-2301-3958ERZINCAN BINALI YILDIRIM UNIVERSITYERZINCAN BINALI YILDIRIM UNIVERSITYIn this paper, we define bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences, which generalize Fibonacci type, Lucas type, bi-periodic Fibonacci type and bi-periodic Lucas type sequences, using recurrence relations of (p,q)-Fibonacci and (p,q)-Lucas sequences. Generating functions and Binet formulas that allow us to calculate the nth terms of these sequences are given and the convergence properties of their consecutive terms are examined. Also, we prove some fundamental identities of bi-periodic (p,q)-Fibonacci and bi-periodic (p,q)-Lucas sequences conform to the well-known properties of Fibonacci and Lucas sequences.https://dergipark.org.tr/tr/download/article-file/2556896bi-periodic fibonacci numbersfibonacci numbergeneralized fibonacci numbersbi-periodic lucas numberslucas number
spellingShingle Yasemin Taşyurdu
Naime Şeyda Türkoğlu
Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi
bi-periodic fibonacci numbers
fibonacci number
generalized fibonacci numbers
bi-periodic lucas numbers
lucas number
title Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
title_full Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
title_fullStr Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
title_full_unstemmed Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
title_short Bi-Periodic (p,q)-Fibonacci and Bi-Periodic (p,q)-Lucas Sequences
title_sort bi periodic p q fibonacci and bi periodic p q lucas sequences
topic bi-periodic fibonacci numbers
fibonacci number
generalized fibonacci numbers
bi-periodic lucas numbers
lucas number
url https://dergipark.org.tr/tr/download/article-file/2556896
work_keys_str_mv AT yasemintasyurdu biperiodicpqfibonacciandbiperiodicpqlucassequences
AT naimeseydaturkoglu biperiodicpqfibonacciandbiperiodicpqlucassequences