Discovery of Intrinsic Ferromagnetism Induced by Memory Effects in Low-Dimensional System

The impact of dynamic processes on equilibrium properties is a fundamental issue in condensed matter physics. This study investigates the intrinsic ferromagnetism generated by memory effects in the low-dimensional continuous symmetry Landau–Ginzburg model, demonstrating how memory effects can suppre...

Full description

Saved in:
Bibliographic Details
Main Authors: Shaolong Zeng, Xuejin Wan, Yangfan Hu, Shijing Tan, Biao Wang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/11/668
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impact of dynamic processes on equilibrium properties is a fundamental issue in condensed matter physics. This study investigates the intrinsic ferromagnetism generated by memory effects in the low-dimensional continuous symmetry Landau–Ginzburg model, demonstrating how memory effects can suppress fluctuations and stabilize long-range magnetic order. Our results provide compelling evidence that tuning dynamical processes can significantly alter the behavior of systems in equilibrium. We quantitatively evaluate how the emergence of the ferromagnetic phase depends on memory effects and confirm the presence of ferromagnetism through simulations of hysteresis loops, spontaneous magnetization, and magnetic domain structures in the 1D continuous symmetry Landau–Ginzburg model. This research offers both theoretical and numerical insights for identifying new phases of matter by dynamically modifying equilibrium properties.
ISSN:2504-3110