DeCGAN: Speech Enhancement Algorithm for Air Traffic Control

Air traffic control (ATC) communication is susceptible to speech noise interference, which undermines the quality of civil aviation speech. To resolve this problem, we propose a speech enhancement model, termed DeCGAN, based on the DeConformer generative adversarial network. The model’s generator, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Haijun Liang, Yimin He, Hanwen Chang, Jianguo Kong
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/5/245
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air traffic control (ATC) communication is susceptible to speech noise interference, which undermines the quality of civil aviation speech. To resolve this problem, we propose a speech enhancement model, termed DeCGAN, based on the DeConformer generative adversarial network. The model’s generator, the DeConformer module, combining a time frequency channel attention (TFC-SA) module and a deformable convolution-based feedforward neural network (DeConv-FFN), effectively captures both long-range dependencies and local features of speech signals. For this study, the outputs from two branches—the mask decoder and the complex decoder—were amalgamated to produce an enhanced speech signal. An evaluation metric discriminator was then utilized to derive speech quality evaluation scores, and adversarial training was implemented to generate higher-quality speech. Subsequently, experiments were performed to compare DeCGAN with other speech enhancement models on the ATC dataset. The experimental results demonstrate that the proposed model is highly competitive compared to existing models. Specifically, the DeCGAN model achieved a perceptual evaluation of speech quality (PESQ) score of 3.31 and short-time objective intelligibility (STOI) value of 0.96.
ISSN:1999-4893