Entanglement distribution in lossy quantum networks

Abstract Entanglement distribution is essential for unlocking the potential of distributed quantum information processing. We consider an N-partite network where entanglement is distributed via a central source over lossy channels, and network participants cooperate to establish entanglement between...

Full description

Saved in:
Bibliographic Details
Main Authors: Leonardo Oleynik, Junaid ur Rehman, Seid Koudia, Symeon Chatzinotas
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-14226-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Entanglement distribution is essential for unlocking the potential of distributed quantum information processing. We consider an N-partite network where entanglement is distributed via a central source over lossy channels, and network participants cooperate to establish entanglement between any two chosen parties under local operations and classical communication (LOCC). We develop a general mathematical framework to assess the average bipartite entanglement shared in a lossy distribution, and introduce a tractable lower bound by optimizing over a subset of single-parameter LOCC transformations. Our results show that probabilistically extracting Bell pairs from W states is more advantageous than deterministically extracting them from GHZ-like states in lossy networks, with this advantage increasing with network size. We further extend our analysis analytically, proving that W states remain more effective in large-scale networks. These findings offer valuable insights into the practical deployment of near-term networks, and corroborate a trade-off relationship between the success conversion probability of entanglement distribution protocols and their robustness to loss.
ISSN:2045-2322