SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios

Detecting underwater objects is a complex task due to the inherent challenges of low contrast and intricate backgrounds. The wide range of object scales further complicates detection accuracy. To address these issues, we propose a Semantic Enhancement and Amplification Network (SEANet), a framework...

Full description

Saved in:
Bibliographic Details
Main Authors: Ke Yang, Xiao Wang, Wei Wang, Xin Yuan, Xin Xu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/10/3078
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849326843582218240
author Ke Yang
Xiao Wang
Wei Wang
Xin Yuan
Xin Xu
author_facet Ke Yang
Xiao Wang
Wei Wang
Xin Yuan
Xin Xu
author_sort Ke Yang
collection DOAJ
description Detecting underwater objects is a complex task due to the inherent challenges of low contrast and intricate backgrounds. The wide range of object scales further complicates detection accuracy. To address these issues, we propose a Semantic Enhancement and Amplification Network (SEANet), a framework designed to enhance underwater object detection in complex visual scenarios. SEANet integrates three core components: the Multi-Scale Detail Amplification Module (MDAM), the Semantic Enhancement Feature Pyramid (SE-FPN), and the Contrast Enhancement Module (CEM). MDAM expands the receptive field across multiple scales, enabling the capture of subtle features that are often masked by background similarities. SE-FPN combines multi-scale features, optimizing feature representation and improving the synthesis of information across layers. CEM incorporates Fore-Background Contrast Attention (FBC) to amplify the contrast between foreground and background objects, thereby improving focus on low-contrast features. These components collectively enhance the network’s ability to effectively identify critical underwater features. Extensive experiments on three distinct underwater object detection datasets demonstrate the efficacy and robustness of SEANet. Specifically, the framework achieves the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>P</mi></mrow></semantics></math></inline-formula> (Average Precision) of 67.0% on the RUOD dataset, 53.0% on the URPC2021 dataset, and 71.5% on the DUO dataset.
format Article
id doaj-art-89d0c3e9b88f41cf8331fe5efe91d95f
institution Kabale University
issn 1424-8220
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj-art-89d0c3e9b88f41cf8331fe5efe91d95f2025-08-20T03:48:02ZengMDPI AGSensors1424-82202025-05-012510307810.3390/s25103078SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual ScenariosKe Yang0Xiao Wang1Wei Wang2Xin Yuan3Xin Xu4School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, ChinaHubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, ChinaHubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, ChinaHubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, ChinaHubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan University of Science and Technology, Wuhan 430081, ChinaDetecting underwater objects is a complex task due to the inherent challenges of low contrast and intricate backgrounds. The wide range of object scales further complicates detection accuracy. To address these issues, we propose a Semantic Enhancement and Amplification Network (SEANet), a framework designed to enhance underwater object detection in complex visual scenarios. SEANet integrates three core components: the Multi-Scale Detail Amplification Module (MDAM), the Semantic Enhancement Feature Pyramid (SE-FPN), and the Contrast Enhancement Module (CEM). MDAM expands the receptive field across multiple scales, enabling the capture of subtle features that are often masked by background similarities. SE-FPN combines multi-scale features, optimizing feature representation and improving the synthesis of information across layers. CEM incorporates Fore-Background Contrast Attention (FBC) to amplify the contrast between foreground and background objects, thereby improving focus on low-contrast features. These components collectively enhance the network’s ability to effectively identify critical underwater features. Extensive experiments on three distinct underwater object detection datasets demonstrate the efficacy and robustness of SEANet. Specifically, the framework achieves the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>P</mi></mrow></semantics></math></inline-formula> (Average Precision) of 67.0% on the RUOD dataset, 53.0% on the URPC2021 dataset, and 71.5% on the DUO dataset.https://www.mdpi.com/1424-8220/25/10/3078underwater object detectionlow contrastfeature pyramid networksemantic enhancement
spellingShingle Ke Yang
Xiao Wang
Wei Wang
Xin Yuan
Xin Xu
SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
Sensors
underwater object detection
low contrast
feature pyramid network
semantic enhancement
title SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
title_full SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
title_fullStr SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
title_full_unstemmed SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
title_short SEANet: Semantic Enhancement and Amplification for Underwater Object Detection in Complex Visual Scenarios
title_sort seanet semantic enhancement and amplification for underwater object detection in complex visual scenarios
topic underwater object detection
low contrast
feature pyramid network
semantic enhancement
url https://www.mdpi.com/1424-8220/25/10/3078
work_keys_str_mv AT keyang seanetsemanticenhancementandamplificationforunderwaterobjectdetectionincomplexvisualscenarios
AT xiaowang seanetsemanticenhancementandamplificationforunderwaterobjectdetectionincomplexvisualscenarios
AT weiwang seanetsemanticenhancementandamplificationforunderwaterobjectdetectionincomplexvisualscenarios
AT xinyuan seanetsemanticenhancementandamplificationforunderwaterobjectdetectionincomplexvisualscenarios
AT xinxu seanetsemanticenhancementandamplificationforunderwaterobjectdetectionincomplexvisualscenarios