Effect of Prebiotics-Enhanced Probiotics on the Growth of Streptococcus mutans

Streptococcus mutans predominantly creates an acidic environment in an oral cavity. This results in dental demineralization and carious lesions. The probiotics are beneficial microorganisms that modulate the bacterial balance in the digestive system. Prebiotics are defined as nondigestible oligosacc...

Full description

Saved in:
Bibliographic Details
Main Authors: Santichai Nunpan, Chatrudee Suwannachart, Kornchanok Wayakanon
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Microbiology
Online Access:http://dx.doi.org/10.1155/2019/4623807
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streptococcus mutans predominantly creates an acidic environment in an oral cavity. This results in dental demineralization and carious lesions. The probiotics are beneficial microorganisms that modulate the bacterial balance in the digestive system. Prebiotics are defined as nondigestible oligosaccharides that are utilized for the selective stimulation of the beneficial microorganisms. The objective of this study was to evaluate the efficacy of the prebiotics, galactooligosaccharides (GOS) and fructooligosaccharides (FOS), for enhancing the probiotic Lactobacillus acidophilus ATCC 4356, for inhibiting Streptococcus mutans (A32-2) for the prevention of dental caries. The growth rate of the S. mutans significantly decreased when cocultured with L. acidophilus in the GOS-supplemented medium at 3%, 4%, and 5%. In the FOS-supplemented medium, the growth rate of S. mutans significantly decreased in all concentrations when cocultured with L. acidophilus. There was no significant difference in the growth rate of L. acidophilus in all concentrations of either GOS or FOS. It can be concluded that the growth rate of S. mutans was significantly retarded when cocultured with L. acidophilus and the proper concentration of prebiotics. These prebiotics have potential for a clinical application to activate the function of the naturally intraoral L. acidophilus to inhibit S. mutans.
ISSN:1687-918X
1687-9198