Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings

This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M),...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea Sánchez-Arroyo, Mario Rodríguez-Reyes, Gerardo Daniel Olvera-Romero, José Refugio Parga-Torres, Zully Matamoros-Veloza, Brandon Osvaldo Villarreal-Fuentes, Dagoberto Vázquez-Obregón
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Next Sustainability
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2949823625000066
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533349630312448
author Andrea Sánchez-Arroyo
Mario Rodríguez-Reyes
Gerardo Daniel Olvera-Romero
José Refugio Parga-Torres
Zully Matamoros-Veloza
Brandon Osvaldo Villarreal-Fuentes
Dagoberto Vázquez-Obregón
author_facet Andrea Sánchez-Arroyo
Mario Rodríguez-Reyes
Gerardo Daniel Olvera-Romero
José Refugio Parga-Torres
Zully Matamoros-Veloza
Brandon Osvaldo Villarreal-Fuentes
Dagoberto Vázquez-Obregón
author_sort Andrea Sánchez-Arroyo
collection DOAJ
description This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations.
format Article
id doaj-art-8838da4a4c044fc8bc288b6e2a35586d
institution Kabale University
issn 2949-8236
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Next Sustainability
spelling doaj-art-8838da4a4c044fc8bc288b6e2a35586d2025-01-16T04:29:30ZengElsevierNext Sustainability2949-82362025-01-016100103Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housingsAndrea Sánchez-Arroyo0Mario Rodríguez-Reyes1Gerardo Daniel Olvera-Romero2José Refugio Parga-Torres3Zully Matamoros-Veloza4Brandon Osvaldo Villarreal-Fuentes5Dagoberto Vázquez-Obregón6División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, Mexico; Corresponding author.Facultad de ingeniería, Universidad Autónoma de Coahuila, Ciudad Universitaria, Carretera a México Km. 13, Arteaga, Coahuila, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDepartamento de Metal-Mecánica, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo. V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoThis study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations.http://www.sciencedirect.com/science/article/pii/S2949823625000066Magnesium metal matrixPowder metallurgyCupola slagNano-Al2O3Corrosion rate
spellingShingle Andrea Sánchez-Arroyo
Mario Rodríguez-Reyes
Gerardo Daniel Olvera-Romero
José Refugio Parga-Torres
Zully Matamoros-Veloza
Brandon Osvaldo Villarreal-Fuentes
Dagoberto Vázquez-Obregón
Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
Next Sustainability
Magnesium metal matrix
Powder metallurgy
Cupola slag
Nano-Al2O3
Corrosion rate
title Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
title_full Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
title_fullStr Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
title_full_unstemmed Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
title_short Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
title_sort recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
topic Magnesium metal matrix
Powder metallurgy
Cupola slag
Nano-Al2O3
Corrosion rate
url http://www.sciencedirect.com/science/article/pii/S2949823625000066
work_keys_str_mv AT andreasanchezarroyo recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT mariorodriguezreyes recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT gerardodanielolveraromero recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT joserefugiopargatorres recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT zullymatamorosveloza recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT brandonosvaldovillarrealfuentes recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings
AT dagobertovazquezobregon recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings