Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings
This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M),...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-01-01
|
Series: | Next Sustainability |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2949823625000066 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841533349630312448 |
---|---|
author | Andrea Sánchez-Arroyo Mario Rodríguez-Reyes Gerardo Daniel Olvera-Romero José Refugio Parga-Torres Zully Matamoros-Veloza Brandon Osvaldo Villarreal-Fuentes Dagoberto Vázquez-Obregón |
author_facet | Andrea Sánchez-Arroyo Mario Rodríguez-Reyes Gerardo Daniel Olvera-Romero José Refugio Parga-Torres Zully Matamoros-Veloza Brandon Osvaldo Villarreal-Fuentes Dagoberto Vázquez-Obregón |
author_sort | Andrea Sánchez-Arroyo |
collection | DOAJ |
description | This study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations. |
format | Article |
id | doaj-art-8838da4a4c044fc8bc288b6e2a35586d |
institution | Kabale University |
issn | 2949-8236 |
language | English |
publishDate | 2025-01-01 |
publisher | Elsevier |
record_format | Article |
series | Next Sustainability |
spelling | doaj-art-8838da4a4c044fc8bc288b6e2a35586d2025-01-16T04:29:30ZengElsevierNext Sustainability2949-82362025-01-016100103Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housingsAndrea Sánchez-Arroyo0Mario Rodríguez-Reyes1Gerardo Daniel Olvera-Romero2José Refugio Parga-Torres3Zully Matamoros-Veloza4Brandon Osvaldo Villarreal-Fuentes5Dagoberto Vázquez-Obregón6División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, Mexico; Corresponding author.Facultad de ingeniería, Universidad Autónoma de Coahuila, Ciudad Universitaria, Carretera a México Km. 13, Arteaga, Coahuila, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDivisión de Estudios de Posgrado e Investigación, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo, V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoDepartamento de Metal-Mecánica, Tecnológico Nacional de México / Instituto Tecnológico de Saltillo. V. Carranza, #2400, Col. Tecnológico, Saltillo, Coahuila C.P 25280, MexicoThis study investigated magnesium matrix composites reinforced with cupola slag (a source of CaSiO₃) and Al₂O₃ particles for potential application in battery pack system (BPS) housings. The composites were fabricated via powder metallurgy, resulting in four systems: a pure magnesium system (100 M), a composite with 85 wt% Mg and 15 wt% cupola slag (85M-15C), and two hybrid composites with 85 wt% Mg combined with 12.5 wt% and 5 wt% cupola slag, and 2.5 wt% and 5 wt% Al₂O₃, respectively, forming the 85M-12.5C-2.5 A and 85M-10C-5A systems. Their mechanical properties and corrosion resistance in a 3.5 wt% NaCl solution were systematically evaluated. Microstructural analysis revealed a significant grain size reduction in the reinforced systems, with the 85M-12.5C-2.5 A system achieving an average grain size of 9.4 µm compared to 22.5 µm in the unreinforced 100 M system. The incorporation of CaSiO₃ and Al₂O₃ reinforcements improved microhardness by up to 55 % and increased compressive strength to a maximum of 329.13 MPa. These enhancements were attributed to grain size and the synergistic effects of micro- and nano-reinforcements. Additionally, the reinforced composites demonstrated superior corrosion resistance, as evidenced by reduced degradation rates in the NaCl solution. This improvement was attributed to the formation of protective Mg(OH)₂ layers, with the 85M-10C-5A system exhibiting the lowest corrosion current density (122 μA/cm²). These findings underscore the potential of magnesium matrix composites reinforced with cupola slag and Al₂O₃ as lightweight, durable, and sustainable materials for BPS housings, addressing both performance and environmental considerations.http://www.sciencedirect.com/science/article/pii/S2949823625000066Magnesium metal matrixPowder metallurgyCupola slagNano-Al2O3Corrosion rate |
spellingShingle | Andrea Sánchez-Arroyo Mario Rodríguez-Reyes Gerardo Daniel Olvera-Romero José Refugio Parga-Torres Zully Matamoros-Veloza Brandon Osvaldo Villarreal-Fuentes Dagoberto Vázquez-Obregón Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings Next Sustainability Magnesium metal matrix Powder metallurgy Cupola slag Nano-Al2O3 Corrosion rate |
title | Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
title_full | Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
title_fullStr | Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
title_full_unstemmed | Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
title_short | Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
title_sort | recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings |
topic | Magnesium metal matrix Powder metallurgy Cupola slag Nano-Al2O3 Corrosion rate |
url | http://www.sciencedirect.com/science/article/pii/S2949823625000066 |
work_keys_str_mv | AT andreasanchezarroyo recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT mariorodriguezreyes recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT gerardodanielolveraromero recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT joserefugiopargatorres recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT zullymatamorosveloza recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT brandonosvaldovillarrealfuentes recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings AT dagobertovazquezobregon recyclingcupolaslagformanufacturingmagnesiummetalmatrixcompositeswithaluminaforelectricvehiclebatterypacksystemhousings |