Classification and risk assessment of ovarian-adnexal lesions using parametric and radiomic analysis of co-registered ultrasound-photoacoustic tomographic images
Ovarian-adnexal lesions are conventionally assessed with ultrasound (US) under the guidance of the Ovarian-Adnexal Reporting and Data System (O-RADS). However, the low specificity of O-RADS results in many unnecessary surgeries. Here, we use co-registered US and photoacoustic tomography (PAT) to imp...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Photoacoustics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2213597924000922 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ovarian-adnexal lesions are conventionally assessed with ultrasound (US) under the guidance of the Ovarian-Adnexal Reporting and Data System (O-RADS). However, the low specificity of O-RADS results in many unnecessary surgeries. Here, we use co-registered US and photoacoustic tomography (PAT) to improve the diagnostic accuracy of O-RADS. Physics-based parametric algorithms for US and PAT were developed to estimate the acoustic and photoacoustic properties of 93 ovarian lesions. Additionally, statistics-based radiomic algorithms were applied to quantify differences in the lesion texture on US-PAT images. A machine learning model (US-PAT KNN model) was developed based on an optimized subset of eight US and PAT imaging features to classify a lesion as either cancer, one of four subtypes of benign lesions, or a normal ovary. The model achieved an area under the receiver operating characteristic curve (AUC) of 0.969 and a balanced six-class classification accuracy of 86.0 %. |
---|---|
ISSN: | 2213-5979 |