Background Light Suppression for Multispectral Imaging in Surgical Settings

Multispectral imaging (MSI) enables non-invasive tissue differentiation based on spectral characteristics and has shown great potential as a tool for surgical guidance. However, adapting MSI to open surgeries is challenging. Systems that rely on light sources present in the operating room experience...

Full description

Saved in:
Bibliographic Details
Main Authors: Moritz Gerlich, Andreas Schmid, Thomas Greiner, Stefan Kray
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/1/141
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multispectral imaging (MSI) enables non-invasive tissue differentiation based on spectral characteristics and has shown great potential as a tool for surgical guidance. However, adapting MSI to open surgeries is challenging. Systems that rely on light sources present in the operating room experience limitations due to frequent lighting changes, which distort the spectral data and require countermeasures such as disruptive recalibrations. On the other hand, MSI systems that rely on dedicated lighting require external light sources, such as surgical lights, to be turned off during open surgery settings. This disrupts the surgical workflow and extends operation times. To this end, we present an approach that addresses these issues by combining active illumination with smart background suppression. By alternately capturing images with and without a modulated light source at a desired wavelength, we isolate the target signal, enabling artifact-free spectral scanning. We demonstrate the performance of our approach using a smart pixel camera, emphasizing its signal-to-noise ratio (SNR) advantage over a conventional high-speed camera. Our results show that accurate reflectance measurements can be achieved in clinical settings with high background illumination. Medical application is demonstrated through the estimation of blood oxygenation, and its suitability for open surgeries is discussed.
ISSN:1424-8220