Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)

The Stirling basis function is a kind of rational basis function generated by discrete probability model. By analyzing the layer-by-layer recurrence relation of the basis functions, the nth degree Stirling basis functions sequence is generated via discrete convolution. For the Stirling curve, n! de...

Full description

Saved in:
Bibliographic Details
Main Authors: 王瑜(WANG Yu), 刘婉柔(LIU Wanrou), 解滨(XIE Bin), 韩力文(HAN Liwen)
Format: Article
Language:zho
Published: Zhejiang University Press 2025-01-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2025.01.013
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841525553011621888
author 王瑜(WANG Yu)
刘婉柔(LIU Wanrou)
解滨(XIE Bin)
韩力文(HAN Liwen)
author_facet 王瑜(WANG Yu)
刘婉柔(LIU Wanrou)
解滨(XIE Bin)
韩力文(HAN Liwen)
author_sort 王瑜(WANG Yu)
collection DOAJ
description The Stirling basis function is a kind of rational basis function generated by discrete probability model. By analyzing the layer-by-layer recurrence relation of the basis functions, the nth degree Stirling basis functions sequence is generated via discrete convolution. For the Stirling curve, n! de Casteljau algorithms are obtained for the recursive evaluation of curves. Furthermore, we obtain two evaluation algorithms with linear complexity, as well as the hodograph of the curve with discrete convolution representation and the explicit expression for the derivation of the first and last basis functions. The method in this paper can be extended to the study of the rational basis functions, curves and surfaces on a class of nested spaces.(斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯特林曲线的2种线性求值算法、速端曲线离散卷积表示以及首末两个n次斯特林基函数的导函数显式表达式。研究可推广至一类嵌套空间中的有理基函数及其曲线曲面。)
format Article
id doaj-art-86584411873141c78b6004fd3b961e14
institution Kabale University
issn 1008-9497
language zho
publishDate 2025-01-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj-art-86584411873141c78b6004fd3b961e142025-01-17T08:42:35ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972025-01-0152112213210.3785/j.issn.1008-9497.2025.01.013Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)王瑜(WANG Yu)0https://orcid.org/0009-0006-9329-9444刘婉柔(LIU Wanrou)1解滨(XIE Bin)2韩力文(HAN Liwen)3https://orcid.org/0000-0001-7210-83181School of Mathematics Sciences, Hebei Normal University, Shijiazhuang 050024, China(1河北师范大学 数学科学学院,河北 石家庄 050024)1School of Mathematics Sciences, Hebei Normal University, Shijiazhuang 050024, China(1河北师范大学 数学科学学院,河北 石家庄 050024)2School of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, China(2河北师范大学 计算机与网络空间安全学院, 河北 石家庄 050024)1School of Mathematics Sciences, Hebei Normal University, Shijiazhuang 050024, China(1河北师范大学 数学科学学院,河北 石家庄 050024)The Stirling basis function is a kind of rational basis function generated by discrete probability model. By analyzing the layer-by-layer recurrence relation of the basis functions, the nth degree Stirling basis functions sequence is generated via discrete convolution. For the Stirling curve, n! de Casteljau algorithms are obtained for the recursive evaluation of curves. Furthermore, we obtain two evaluation algorithms with linear complexity, as well as the hodograph of the curve with discrete convolution representation and the explicit expression for the derivation of the first and last basis functions. The method in this paper can be extended to the study of the rational basis functions, curves and surfaces on a class of nested spaces.(斯特林基函数是由离散概率模型生成的一类有理基函数。通过分析基函数的逐层递推关系,构造了斯特林基函数的离散卷积结构。结合离散卷积满足的交换性,得到n次斯特林曲线的n!种de Casteljau算法,并将其用于曲线的递归求值,进而得到n次斯特林曲线的2种线性求值算法、速端曲线离散卷积表示以及首末两个n次斯特林基函数的导函数显式表达式。研究可推广至一类嵌套空间中的有理基函数及其曲线曲面。)https://doi.org/10.3785/j.issn.1008-9497.2025.01.013stirling curves(斯特林曲线)discrete convolution(离散卷积)de casteljau algorithm(de casteljau算法)linear complexity(线性复杂度)hodograph(速端曲线)
spellingShingle 王瑜(WANG Yu)
刘婉柔(LIU Wanrou)
解滨(XIE Bin)
韩力文(HAN Liwen)
Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
Zhejiang Daxue xuebao. Lixue ban
stirling curves(斯特林曲线)
discrete convolution(离散卷积)
de casteljau algorithm(de casteljau算法)
linear complexity(线性复杂度)
hodograph(速端曲线)
title Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
title_full Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
title_fullStr Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
title_full_unstemmed Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
title_short Discrete convolution generation of the stirling curve and its evaluation algorithm(斯特林曲线的离散卷积生成及其求值算法)
title_sort discrete convolution generation of the stirling curve and its evaluation algorithm 斯特林曲线的离散卷积生成及其求值算法
topic stirling curves(斯特林曲线)
discrete convolution(离散卷积)
de casteljau algorithm(de casteljau算法)
linear complexity(线性复杂度)
hodograph(速端曲线)
url https://doi.org/10.3785/j.issn.1008-9497.2025.01.013
work_keys_str_mv AT wángyúwangyu discreteconvolutiongenerationofthestirlingcurveanditsevaluationalgorithmsītèlínqūxiàndelísànjuǎnjīshēngchéngjíqíqiúzhísuànfǎ
AT liúwǎnróuliuwanrou discreteconvolutiongenerationofthestirlingcurveanditsevaluationalgorithmsītèlínqūxiàndelísànjuǎnjīshēngchéngjíqíqiúzhísuànfǎ
AT jiěbīnxiebin discreteconvolutiongenerationofthestirlingcurveanditsevaluationalgorithmsītèlínqūxiàndelísànjuǎnjīshēngchéngjíqíqiúzhísuànfǎ
AT hánlìwénhanliwen discreteconvolutiongenerationofthestirlingcurveanditsevaluationalgorithmsītèlínqūxiàndelísànjuǎnjīshēngchéngjíqíqiúzhísuànfǎ