On Diophantine Equations 2<sup><i>x</i></sup> ± (2<sup><i>k</i></sup><i>p</i>)<sup><i>y</i></sup> = <i>z</i><sup>2</sup> and −2<sup><i>x</i></sup> + (2<sup><i>k</i></sup>3)<sup><i>y</i></sup> = <i>z</i><sup>2</sup>

In this paper, we solve three Diophantine equations: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>x</mi></msup><mo>±</mo><msup>&...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan Li, Torre Lloyd, Angel Clinton
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/24/4027
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we solve three Diophantine equations: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>2</mn><mi>x</mi></msup><mo>±</mo><msup><mrow><mo>(</mo><msup><mn>2</mn><mi>k</mi></msup><mi>p</mi><mo>)</mo></mrow><mi>y</mi></msup><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msup><mn>2</mn><mi>x</mi></msup><mo>+</mo><msup><mrow><mo>(</mo><msup><mn>2</mn><mi>k</mi></msup><mn>3</mn><mo>)</mo></mrow><mi>y</mi></msup><mo>=</mo><msup><mi>z</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> and prime <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>≡</mo><mo>±</mo><mn>3</mn></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mspace width="4.44443pt"></mspace><mo>(</mo><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>8</mn><mo>)</mo></mrow></semantics></math></inline-formula>. We obtain all the non-negative integer solutions by using elementary methods and the database of elliptic curves in “The L-functions and modular forms database” (LMFDB).
ISSN:2227-7390