Calcium levels modulate embryo yield in Brassica napus microspore embryogenesis
Calcium (Ca2+) is a universal signaling cation with a prominent role as second messenger in many different plant processes, including sexual reproduction. However, there is much less knowledge about the involvement of Ca2+ during in vitro embryogenesis processes. In this work we performed a study of...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-01-01
|
Series: | Frontiers in Plant Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpls.2024.1512500/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Calcium (Ca2+) is a universal signaling cation with a prominent role as second messenger in many different plant processes, including sexual reproduction. However, there is much less knowledge about the involvement of Ca2+ during in vitro embryogenesis processes. In this work we performed a study of Ca2+ levels during the different stages of microspore embryogenesis in Brassica napus, with special attention to how Ca2+ can influence the occurrence of different embryogenic structures with different embryogenic potential. We also performed a pharmacological study to modulate Ca2+ homeostasis during different stages of the process, using a series of Ca2+-altering chemicals (BAPTA-AM, bepridil, chlorpromazine, cyclopiazonic acid, EGTA, inositol 1,4,5-trisphosphate, ionophore A23187, W-7). This study shows that Ca2+ increase can be considered as an early marker of induction of microspore embryogenesis. Besides, Ca2+ levels are highly dynamic during microspore embryogenesis, influencing the final embryo yield. Increase of either extracellular or intracellular Ca2+ levels improves embryo yield without altering the proportion of highly embryogenic structures formed, which suggests that elevated Ca2+ levels increase the amount of microspores reaching the minimum Ca2+ threshold required for embryogenesis induction. Conversely, inhibition of Ca2+ uptake or signaling results in reduced embryogenic response. This allows to modulate embryo yield within a functional range, with lower and upper Ca2+ thresholds beyond which embryo yield is reduced. There seems to be a relationship between Ca2+ levels and embryo differentiation. |
---|---|
ISSN: | 1664-462X |