Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA

The growing Internet traffic urgently needs large-capacity and cost-effective optical transmissions. To maintain system performance under low-cost conditions, the silicon-based integrated coherent transmit and receive optical sub-assembly (IC-TROSA) and the complex-valued convolutional neural networ...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuhan Gong, Xiaoshuo Jia, Ying Zhu, Kailai Liu, Ming Luo, Jin Tao, Zhixue He, Chao Li, Zichen Liu, Yan Li, Jian Wu, Chao Yang
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10777400/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533420009684992
author Yuhan Gong
Xiaoshuo Jia
Ying Zhu
Kailai Liu
Ming Luo
Jin Tao
Zhixue He
Chao Li
Zichen Liu
Yan Li
Jian Wu
Chao Yang
author_facet Yuhan Gong
Xiaoshuo Jia
Ying Zhu
Kailai Liu
Ming Luo
Jin Tao
Zhixue He
Chao Li
Zichen Liu
Yan Li
Jian Wu
Chao Yang
author_sort Yuhan Gong
collection DOAJ
description The growing Internet traffic urgently needs large-capacity and cost-effective optical transmissions. To maintain system performance under low-cost conditions, the silicon-based integrated coherent transmit and receive optical sub-assembly (IC-TROSA) and the complex-valued convolutional neural network (CVCNN) algorithm provide an effective solution for high-capacity and long-distance WDM optical transmission. The proposed CVCNN can improve the system performance under nonlinear damage conditions, which fully considers the orthogonality of IQ signals in this paper. This algorithm exhibits different equalization performances for 64QAM signals under various encoding schemes considering 20%-overhead, achieving up to 2dB maximum decrease in the required optical signal-to-noise ratio at the optical back-to-back case. Regarding transmission distance, employing CVCNN extends the maximum reach from 3500 km to 3850 km. The paper also demonstrates the application of CVCNN in WDM systems, enhancing system performance across different WDM encoding schemes. Finally, the experiment verified that CVCNN requires fewer computational resources than real-valued convolutional neural networks (RVCNN).
format Article
id doaj-art-84cbfc4e2a694cb6b5a412d17786dd86
institution Kabale University
issn 1943-0655
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Photonics Journal
spelling doaj-art-84cbfc4e2a694cb6b5a412d17786dd862025-01-16T00:00:12ZengIEEEIEEE Photonics Journal1943-06552025-01-011711810.1109/JPHOT.2024.351079110777400Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSAYuhan Gong0Xiaoshuo Jia1https://orcid.org/0009-0003-2786-2911Ying Zhu2https://orcid.org/0000-0001-9250-3550Kailai Liu3Ming Luo4https://orcid.org/0000-0002-7291-1706Jin Tao5https://orcid.org/0000-0003-2212-3880Zhixue He6https://orcid.org/0000-0001-8533-2247Chao Li7https://orcid.org/0000-0001-6623-131XZichen Liu8Yan Li9https://orcid.org/0000-0003-1527-3418Jian Wu10https://orcid.org/0000-0003-1060-6412Chao Yang11https://orcid.org/0009-0008-5281-6948State Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan, Hubei, ChinaState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, ChinaNational Optoelectronics Innovation Center, Wuhan, Hubei, ChinaState Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan, Hubei, ChinaState Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan, Hubei, ChinaState Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan, Hubei, ChinaPeng Cheng Laboratory, Shenzhen, ChinaPeng Cheng Laboratory, Shenzhen, ChinaPeng Cheng Laboratory, Shenzhen, ChinaState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, ChinaState Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, ChinaState Key Laboratory of Optical Communication Technologies and Networks, China Information Communication Technologies Group Corporation, Wuhan, Hubei, ChinaThe growing Internet traffic urgently needs large-capacity and cost-effective optical transmissions. To maintain system performance under low-cost conditions, the silicon-based integrated coherent transmit and receive optical sub-assembly (IC-TROSA) and the complex-valued convolutional neural network (CVCNN) algorithm provide an effective solution for high-capacity and long-distance WDM optical transmission. The proposed CVCNN can improve the system performance under nonlinear damage conditions, which fully considers the orthogonality of IQ signals in this paper. This algorithm exhibits different equalization performances for 64QAM signals under various encoding schemes considering 20%-overhead, achieving up to 2dB maximum decrease in the required optical signal-to-noise ratio at the optical back-to-back case. Regarding transmission distance, employing CVCNN extends the maximum reach from 3500 km to 3850 km. The paper also demonstrates the application of CVCNN in WDM systems, enhancing system performance across different WDM encoding schemes. Finally, the experiment verified that CVCNN requires fewer computational resources than real-valued convolutional neural networks (RVCNN).https://ieeexplore.ieee.org/document/10777400/Complex-value neural network800 Gb/s/lane transmissionlong-haul WDMlow-cost optical device
spellingShingle Yuhan Gong
Xiaoshuo Jia
Ying Zhu
Kailai Liu
Ming Luo
Jin Tao
Zhixue He
Chao Li
Zichen Liu
Yan Li
Jian Wu
Chao Yang
Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
IEEE Photonics Journal
Complex-value neural network
800 Gb/s/lane transmission
long-haul WDM
low-cost optical device
title Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
title_full Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
title_fullStr Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
title_full_unstemmed Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
title_short Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA
title_sort complex valued cnn nonlinear equalization enabled 36 tbit x002f s 45 x00d7 800 gbit x002f s wdm transmission over 3150 km using silicon based ic trosa
topic Complex-value neural network
800 Gb/s/lane transmission
long-haul WDM
low-cost optical device
url https://ieeexplore.ieee.org/document/10777400/
work_keys_str_mv AT yuhangong complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT xiaoshuojia complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT yingzhu complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT kailailiu complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT mingluo complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT jintao complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT zhixuehe complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT chaoli complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT zichenliu complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT yanli complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT jianwu complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa
AT chaoyang complexvaluedcnnnonlinearequalizationenabled36tbitx002fs45x00d7800gbitx002fswdmtransmissionover3150kmusingsiliconbasedictrosa