Regional-specific trends of PM2.5 and O3 temperature sensitivity in the United States

Abstract Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examine...

Full description

Saved in:
Bibliographic Details
Main Authors: Lifei Yin, Bin Bai, Bingqing Zhang, Qiao Zhu, Qian Di, Weeberb J. Requia, Joel D. Schwartz, Liuhua Shi, Pengfei Liu
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Climate and Atmospheric Science
Online Access:https://doi.org/10.1038/s41612-024-00862-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM2.5) and ozone (O3) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning. Our findings demonstrate that in the eastern US, stringent emission control strategies have significantly reduced the positive responses of PM2.5 and O3 to summer temperature, thereby lowering the population exposure associated with warming-induced air quality deterioration. In contrast, PM2.5 in the western US became more sensitive to temperature, highlighting the urgent need to manage and mitigate the impact of worsening wildfires. Our results have important implications for air quality management and risk assessments of future climate change.
ISSN:2397-3722