Towards large-scale quantum optimization solvers with few qubits

Abstract Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approa...

Full description

Saved in:
Bibliographic Details
Main Authors: Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego García-Martín, Giancarlo Camilo, Anima Anandkumar, Leandro Aolita
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55346-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Quantum computers hold the promise of more efficient combinatorial optimization solvers, which could be game-changing for a broad range of applications. However, a bottleneck for materializing such advantages is that, in order to challenge classical algorithms in practice, mainstream approaches require a number of qubits prohibitively large for near-term hardware. Here we introduce a variational solver for MaxCut problems over $$m={{\mathcal{O}}}({n}^{k})$$ m = O ( n k ) binary variables using only n qubits, with tunable k > 1. The number of parameters and circuit depth display mild linear and sublinear scalings in m, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. Altogether, this leads to high quantum-solver performances. For instance, for m = 7000, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for m = 2000, experiments with n = 17 trapped-ion qubits feature MaxCut approximation ratios estimated to be beyond the hardness threshold 0.941. Our findings offer an interesting heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near-term quantum devices.
ISSN:2041-1723