Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles

<p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Stude, H. Aufmhoff, H. Schlager, M. Rapp, C. Baumann, F. Arnold, B. Strelnikov
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841543547099021312
author J. Stude
J. Stude
H. Aufmhoff
H. Schlager
M. Rapp
M. Rapp
C. Baumann
F. Arnold
B. Strelnikov
author_facet J. Stude
J. Stude
H. Aufmhoff
H. Schlager
M. Rapp
M. Rapp
C. Baumann
F. Arnold
B. Strelnikov
author_sort J. Stude
collection DOAJ
description <p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00001.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00001.png"/></svg:svg></span></span>, mass) of up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="63c7f3946b001d4e8415de9c4a1834dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00002.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00002.png"/></svg:svg></span></span> 2000 and 20 000 respectively, for analysis of meteor smoke particles. The flights were performed in the framework of the polar mesospheric winter echo (PMWE) campaigns, initiated and coordinated by the Leibniz Institute of Atmospheric Physics (IAP), to investigate polar mesospheric winter radar echoes in Andøya (Norway) in 2018 and 2021. Both flights were successful and allowed the mass number and chemical composition of charged meteor smoke particles to be investigated. We found a complex and diverse composition of positively and negatively charged molecules and particles within our mass range in a region that is notoriously difficult to get mass spectroscopic data from. While at altitudes below 85 km we observed negatively charged particles of up to several thousands of atomic mass units, above this altitude we found possible building blocks of these large particles that form right after their ablation from the parent meteorite material. In the first flight we detected no positively charged particles above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00003.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00003.png"/></svg:svg></span></span> 100 and a difficult-to-interpret signal for negatively charged particles beyond our mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00004.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00004.png"/></svg:svg></span></span> 2000. In the second flight, however, we detected positively charged particles between around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00005.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00005.png"/></svg:svg></span></span> 180 and 350 and a number of different negatively charged particles up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab5624c790cbaa3f5350f350107808ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00006.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00006.png"/></svg:svg></span></span> 5500. Due to the very large mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00007.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00007.png"/></svg:svg></span></span> 20 000 used in the second flight and the subsequent lower mass resolution, unambiguous mass identification is not possible. A particular interesting pattern was found at 80.8 km of a compound that seems to double its mass around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00008.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00008.png"/></svg:svg></span></span> 225, 450, 900 and 1800.</p> <p>Comparing our findings to proposed meteor smoke particle compounds by other authors, our observations would be consistent with magnetite, fayalite and forsterite. However, other possible compounds cannot be excluded.</p>
format Article
id doaj-art-836ca73fa61a470ebe7e7f15136a9392
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-836ca73fa61a470ebe7e7f15136a93922025-01-13T09:57:11ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-012538339610.5194/acp-25-383-2025Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particlesJ. Stude0J. Stude1H. Aufmhoff2H. Schlager3M. Rapp4M. Rapp5C. Baumann6F. Arnold7B. Strelnikov8German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyDivision of Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, SwedenGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyAtmospheric Physics, Ludwig-Maximilians-Universität München (LMU), Munich, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyMax Planck Institute for Nuclear Physics (MPIK), Heidelberg, GermanyLeibniz Institute of Atmospheric Physics (IAP), Kühlungsborn, Germany<p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00001.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00001.png"/></svg:svg></span></span>, mass) of up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="63c7f3946b001d4e8415de9c4a1834dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00002.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00002.png"/></svg:svg></span></span> 2000 and 20 000 respectively, for analysis of meteor smoke particles. The flights were performed in the framework of the polar mesospheric winter echo (PMWE) campaigns, initiated and coordinated by the Leibniz Institute of Atmospheric Physics (IAP), to investigate polar mesospheric winter radar echoes in Andøya (Norway) in 2018 and 2021. Both flights were successful and allowed the mass number and chemical composition of charged meteor smoke particles to be investigated. We found a complex and diverse composition of positively and negatively charged molecules and particles within our mass range in a region that is notoriously difficult to get mass spectroscopic data from. While at altitudes below 85 km we observed negatively charged particles of up to several thousands of atomic mass units, above this altitude we found possible building blocks of these large particles that form right after their ablation from the parent meteorite material. In the first flight we detected no positively charged particles above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00003.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00003.png"/></svg:svg></span></span> 100 and a difficult-to-interpret signal for negatively charged particles beyond our mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00004.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00004.png"/></svg:svg></span></span> 2000. In the second flight, however, we detected positively charged particles between around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00005.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00005.png"/></svg:svg></span></span> 180 and 350 and a number of different negatively charged particles up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab5624c790cbaa3f5350f350107808ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00006.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00006.png"/></svg:svg></span></span> 5500. Due to the very large mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00007.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00007.png"/></svg:svg></span></span> 20 000 used in the second flight and the subsequent lower mass resolution, unambiguous mass identification is not possible. A particular interesting pattern was found at 80.8 km of a compound that seems to double its mass around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00008.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00008.png"/></svg:svg></span></span> 225, 450, 900 and 1800.</p> <p>Comparing our findings to proposed meteor smoke particle compounds by other authors, our observations would be consistent with magnetite, fayalite and forsterite. However, other possible compounds cannot be excluded.</p>https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf
spellingShingle J. Stude
J. Stude
H. Aufmhoff
H. Schlager
M. Rapp
M. Rapp
C. Baumann
F. Arnold
B. Strelnikov
Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
Atmospheric Chemistry and Physics
title Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
title_full Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
title_fullStr Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
title_full_unstemmed Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
title_short Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
title_sort measurement report rocket borne measurements of large ions in the mesosphere and lower thermosphere detection of meteor smoke particles
url https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf
work_keys_str_mv AT jstude measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT jstude measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT haufmhoff measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT hschlager measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT mrapp measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT mrapp measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT cbaumann measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT farnold measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles
AT bstrelnikov measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles