Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles
<p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2025-01-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841543547099021312 |
---|---|
author | J. Stude J. Stude H. Aufmhoff H. Schlager M. Rapp M. Rapp C. Baumann F. Arnold B. Strelnikov |
author_facet | J. Stude J. Stude H. Aufmhoff H. Schlager M. Rapp M. Rapp C. Baumann F. Arnold B. Strelnikov |
author_sort | J. Stude |
collection | DOAJ |
description | <p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00001.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00001.png"/></svg:svg></span></span>, mass) of up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="63c7f3946b001d4e8415de9c4a1834dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00002.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00002.png"/></svg:svg></span></span> 2000 and 20 000 respectively, for analysis of meteor smoke particles. The flights were performed in the framework of the polar mesospheric winter echo (PMWE) campaigns, initiated and coordinated by the Leibniz Institute of Atmospheric Physics (IAP), to investigate polar mesospheric winter radar echoes in Andøya (Norway) in 2018 and 2021. Both flights were successful and allowed the mass number and chemical composition of charged meteor smoke particles to be investigated. We found a complex and diverse composition of positively and negatively charged molecules and particles within our mass range in a region that is notoriously difficult to get mass spectroscopic data from. While at altitudes below 85 km we observed negatively charged particles of up to several thousands of atomic mass units, above this altitude we found possible building blocks of these large particles that form right after their ablation from the parent meteorite material. In the first flight we detected no positively charged particles above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00003.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00003.png"/></svg:svg></span></span> 100 and a difficult-to-interpret signal for negatively charged particles beyond our mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00004.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00004.png"/></svg:svg></span></span> 2000. In the second flight, however, we detected positively charged particles between around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00005.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00005.png"/></svg:svg></span></span> 180 and 350 and a number of different negatively charged particles up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab5624c790cbaa3f5350f350107808ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00006.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00006.png"/></svg:svg></span></span> 5500. Due to the very large mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00007.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00007.png"/></svg:svg></span></span> 20 000 used in the second flight and the subsequent lower mass resolution, unambiguous mass identification is not possible. A particular interesting pattern was found at 80.8 km of a compound that seems to double its mass around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00008.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00008.png"/></svg:svg></span></span> 225, 450, 900 and 1800.</p>
<p>Comparing our findings to proposed meteor smoke particle compounds by other authors, our observations would be consistent with magnetite, fayalite and forsterite. However, other possible compounds cannot be excluded.</p> |
format | Article |
id | doaj-art-836ca73fa61a470ebe7e7f15136a9392 |
institution | Kabale University |
issn | 1680-7316 1680-7324 |
language | English |
publishDate | 2025-01-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj-art-836ca73fa61a470ebe7e7f15136a93922025-01-13T09:57:11ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-012538339610.5194/acp-25-383-2025Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particlesJ. Stude0J. Stude1H. Aufmhoff2H. Schlager3M. Rapp4M. Rapp5C. Baumann6F. Arnold7B. Strelnikov8German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyDivision of Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm, SwedenGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyAtmospheric Physics, Ludwig-Maximilians-Universität München (LMU), Munich, GermanyGerman Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen, GermanyMax Planck Institute for Nuclear Physics (MPIK), Heidelberg, GermanyLeibniz Institute of Atmospheric Physics (IAP), Kühlungsborn, Germany<p>We present mass spectroscopic in situ data from rocket flights of two improved ion mass spectrometers in the mesosphere and lower thermosphere region. The instruments were optimized to detect large ions with a mass-to-charge ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="91270dba487782af7360c80516416e4b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00001.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00001.png"/></svg:svg></span></span>, mass) of up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="63c7f3946b001d4e8415de9c4a1834dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00002.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00002.png"/></svg:svg></span></span> 2000 and 20 000 respectively, for analysis of meteor smoke particles. The flights were performed in the framework of the polar mesospheric winter echo (PMWE) campaigns, initiated and coordinated by the Leibniz Institute of Atmospheric Physics (IAP), to investigate polar mesospheric winter radar echoes in Andøya (Norway) in 2018 and 2021. Both flights were successful and allowed the mass number and chemical composition of charged meteor smoke particles to be investigated. We found a complex and diverse composition of positively and negatively charged molecules and particles within our mass range in a region that is notoriously difficult to get mass spectroscopic data from. While at altitudes below 85 km we observed negatively charged particles of up to several thousands of atomic mass units, above this altitude we found possible building blocks of these large particles that form right after their ablation from the parent meteorite material. In the first flight we detected no positively charged particles above <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00003.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00003.png"/></svg:svg></span></span> 100 and a difficult-to-interpret signal for negatively charged particles beyond our mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00004.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00004.png"/></svg:svg></span></span> 2000. In the second flight, however, we detected positively charged particles between around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46f32566b65c77f385ccc58250dc589d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00005.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00005.png"/></svg:svg></span></span> 180 and 350 and a number of different negatively charged particles up to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ab5624c790cbaa3f5350f350107808ad"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00006.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00006.png"/></svg:svg></span></span> 5500. Due to the very large mass range of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82359dc0e2bbce7906032009eb1b5089"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00007.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00007.png"/></svg:svg></span></span> 20 000 used in the second flight and the subsequent lower mass resolution, unambiguous mass identification is not possible. A particular interesting pattern was found at 80.8 km of a compound that seems to double its mass around <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-383-2025-ie00008.svg" width="23pt" height="14pt" src="acp-25-383-2025-ie00008.png"/></svg:svg></span></span> 225, 450, 900 and 1800.</p> <p>Comparing our findings to proposed meteor smoke particle compounds by other authors, our observations would be consistent with magnetite, fayalite and forsterite. However, other possible compounds cannot be excluded.</p>https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf |
spellingShingle | J. Stude J. Stude H. Aufmhoff H. Schlager M. Rapp M. Rapp C. Baumann F. Arnold B. Strelnikov Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles Atmospheric Chemistry and Physics |
title | Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles |
title_full | Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles |
title_fullStr | Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles |
title_full_unstemmed | Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles |
title_short | Measurement report: Rocket-borne measurements of large ions in the mesosphere and lower thermosphere – detection of meteor smoke particles |
title_sort | measurement report rocket borne measurements of large ions in the mesosphere and lower thermosphere detection of meteor smoke particles |
url | https://acp.copernicus.org/articles/25/383/2025/acp-25-383-2025.pdf |
work_keys_str_mv | AT jstude measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT jstude measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT haufmhoff measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT hschlager measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT mrapp measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT mrapp measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT cbaumann measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT farnold measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles AT bstrelnikov measurementreportrocketbornemeasurementsoflargeionsinthemesosphereandlowerthermospheredetectionofmeteorsmokeparticles |