ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT)
The oil film temperature of the spherical hybrid sliding bearings would increase due to the friction and shear of the lubricating oil at high speed or super high speed, which leads to the thermal deformation of bearing and rotor. As a result, the deformation seriously affects the rotation accuracy o...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Office of Journal of Mechanical Strength
2023-01-01
|
Series: | Jixie qiangdu |
Subjects: | |
Online Access: | http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2023.04.023 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841534333200891904 |
---|---|
author | XUE Hao SHEN JingFeng QIN Wei CHENG Pan ZHU Rui |
author_facet | XUE Hao SHEN JingFeng QIN Wei CHENG Pan ZHU Rui |
author_sort | XUE Hao |
collection | DOAJ |
description | The oil film temperature of the spherical hybrid sliding bearings would increase due to the friction and shear of the lubricating oil at high speed or super high speed, which leads to the thermal deformation of bearing and rotor. As a result, the deformation seriously affects the rotation accuracy of the spindle, because it is in the same order of magnitude as the oil film thickness. Therefore, the fluid lubrication mathematical model is established by taking the spherical hybrid sliding bearings with orifice throttling mode as the research object, and the Reynolds equation and energy equation of lubricating oil film are derived. The pressure distribution and temperature distribution of oil film of the spherical hybrid sliding bearings are calculated by combining the finite difference method and relaxation iteration method. The influence of working parameters on bearing capacity and oil film temperature rise was investigated. The results show that the oil film shear effect is stronger and the temperature rise increases with the increase of rotating speed and the decrease of oil film thickness. When the speed is 3 000 r/min and the oil film thickness is 28 μm, the maximum temperature rise of the bearing is 18.65 K higher than that of 1 000 r/min. When the speed is 3 000 r/min and the oil film thickness is 20 μm, the maximum temperature rise of the bearing is 27.685 K higher than that of the oil film thickness of 28 μm. |
format | Article |
id | doaj-art-83266643d6a440428e685aa483478cf6 |
institution | Kabale University |
issn | 1001-9669 |
language | zho |
publishDate | 2023-01-01 |
publisher | Editorial Office of Journal of Mechanical Strength |
record_format | Article |
series | Jixie qiangdu |
spelling | doaj-art-83266643d6a440428e685aa483478cf62025-01-15T02:40:57ZzhoEditorial Office of Journal of Mechanical StrengthJixie qiangdu1001-96692023-01-0192493042274683ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT)XUE HaoSHEN JingFengQIN WeiCHENG PanZHU RuiThe oil film temperature of the spherical hybrid sliding bearings would increase due to the friction and shear of the lubricating oil at high speed or super high speed, which leads to the thermal deformation of bearing and rotor. As a result, the deformation seriously affects the rotation accuracy of the spindle, because it is in the same order of magnitude as the oil film thickness. Therefore, the fluid lubrication mathematical model is established by taking the spherical hybrid sliding bearings with orifice throttling mode as the research object, and the Reynolds equation and energy equation of lubricating oil film are derived. The pressure distribution and temperature distribution of oil film of the spherical hybrid sliding bearings are calculated by combining the finite difference method and relaxation iteration method. The influence of working parameters on bearing capacity and oil film temperature rise was investigated. The results show that the oil film shear effect is stronger and the temperature rise increases with the increase of rotating speed and the decrease of oil film thickness. When the speed is 3 000 r/min and the oil film thickness is 28 μm, the maximum temperature rise of the bearing is 18.65 K higher than that of 1 000 r/min. When the speed is 3 000 r/min and the oil film thickness is 20 μm, the maximum temperature rise of the bearing is 27.685 K higher than that of the oil film thickness of 28 μm.http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2023.04.023Spherical hybrid sliding bearingsOrifice throttlingLoad capacityTemperature fieldThermal deformation |
spellingShingle | XUE Hao SHEN JingFeng QIN Wei CHENG Pan ZHU Rui ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) Jixie qiangdu Spherical hybrid sliding bearings Orifice throttling Load capacity Temperature field Thermal deformation |
title | ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) |
title_full | ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) |
title_fullStr | ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) |
title_full_unstemmed | ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) |
title_short | ANALYSIS OF LOAD CAPACITY AND TEMPERATURE FIELD OF SPHERICAL HYBRID SLIDING BEARINGS (MT) |
title_sort | analysis of load capacity and temperature field of spherical hybrid sliding bearings mt |
topic | Spherical hybrid sliding bearings Orifice throttling Load capacity Temperature field Thermal deformation |
url | http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2023.04.023 |
work_keys_str_mv | AT xuehao analysisofloadcapacityandtemperaturefieldofsphericalhybridslidingbearingsmt AT shenjingfeng analysisofloadcapacityandtemperaturefieldofsphericalhybridslidingbearingsmt AT qinwei analysisofloadcapacityandtemperaturefieldofsphericalhybridslidingbearingsmt AT chengpan analysisofloadcapacityandtemperaturefieldofsphericalhybridslidingbearingsmt AT zhurui analysisofloadcapacityandtemperaturefieldofsphericalhybridslidingbearingsmt |