Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia

Perioperative anaphylaxis has a risk of mortality and compromised quality of patient care. It is difficult to design an evaluation system for risk of anaphylaxis using preoperative tests available in clinical practice. To develop a personalized risk forecast platform for general anesthesia-related a...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuang Liu, Yasuyuki Suzuki, Toshihiro Yorozuya, Masaki Mogi
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:ImmunoInformatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667119022000106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846091587550969856
author Shuang Liu
Yasuyuki Suzuki
Toshihiro Yorozuya
Masaki Mogi
author_facet Shuang Liu
Yasuyuki Suzuki
Toshihiro Yorozuya
Masaki Mogi
author_sort Shuang Liu
collection DOAJ
description Perioperative anaphylaxis has a risk of mortality and compromised quality of patient care. It is difficult to design an evaluation system for risk of anaphylaxis using preoperative tests available in clinical practice. To develop a personalized risk forecast platform for general anesthesia-related anaphylaxis, as a first step, we aimed to investigate the feasibility of machine-learning-based classification using clinical features of patients for risk prediction of anesthesia-related anaphylaxis. After data pre-processing, the performance of five classification methods: Logistic Regression Analysis, Support Vector Machine, Random Forest, Linear Discriminant Analysis, and Naïve Bayes), which were integrated with four feature selection methods (Recursive Feature Elimination, Chi-Squared Method, Correlation-based Feature Selection, and Information Gain Ratio), was evaluated using two-layer cross-validation. Seventy-four features, which were defined from 225 participants, were applied for model fitting. Linear Discriminant Analysis in conjunction with Recursive Feature Elimination showed good performance, with accuracy of 0.867 and Matthews correlation coefficient (MCC) of 0.558 with 25 features used in the classification. Logistic Regression in conjunction with Recursive Feature Elimination model also showed adequate performance, with accuracy of 0.858 and MCC of 0.541 with six features used in the classification. This study presents initial proof of the capability of a machine-learning-based strategy for forecasting low-prevalence anesthesia-related anaphylaxis from a clinical perspective. It could provide a basis for establishing an effective risk-scoring and predictive system for perioperative anaphylaxis that would help identify preoperatively whether anaphylaxis will occur and could be used to predict unstable patient states preceding anaphylactic shock.
format Article
id doaj-art-82777ff76cc9466dbf5ca76f3dc030cb
institution Kabale University
issn 2667-1190
language English
publishDate 2022-12-01
publisher Elsevier
record_format Article
series ImmunoInformatics
spelling doaj-art-82777ff76cc9466dbf5ca76f3dc030cb2025-01-10T04:38:20ZengElsevierImmunoInformatics2667-11902022-12-018100018Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesiaShuang Liu0Yasuyuki Suzuki1Toshihiro Yorozuya2Masaki Mogi3Department of Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Corresponding author.Department of Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan; Department of Anesthesiology, Saiseikai Matsuyama Hospital, Yamanishi, Matsuyama, Ehime, JapanDepartment of Perioperative and Anesthesiology Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, JapanDepartment of Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, JapanPerioperative anaphylaxis has a risk of mortality and compromised quality of patient care. It is difficult to design an evaluation system for risk of anaphylaxis using preoperative tests available in clinical practice. To develop a personalized risk forecast platform for general anesthesia-related anaphylaxis, as a first step, we aimed to investigate the feasibility of machine-learning-based classification using clinical features of patients for risk prediction of anesthesia-related anaphylaxis. After data pre-processing, the performance of five classification methods: Logistic Regression Analysis, Support Vector Machine, Random Forest, Linear Discriminant Analysis, and Naïve Bayes), which were integrated with four feature selection methods (Recursive Feature Elimination, Chi-Squared Method, Correlation-based Feature Selection, and Information Gain Ratio), was evaluated using two-layer cross-validation. Seventy-four features, which were defined from 225 participants, were applied for model fitting. Linear Discriminant Analysis in conjunction with Recursive Feature Elimination showed good performance, with accuracy of 0.867 and Matthews correlation coefficient (MCC) of 0.558 with 25 features used in the classification. Logistic Regression in conjunction with Recursive Feature Elimination model also showed adequate performance, with accuracy of 0.858 and MCC of 0.541 with six features used in the classification. This study presents initial proof of the capability of a machine-learning-based strategy for forecasting low-prevalence anesthesia-related anaphylaxis from a clinical perspective. It could provide a basis for establishing an effective risk-scoring and predictive system for perioperative anaphylaxis that would help identify preoperatively whether anaphylaxis will occur and could be used to predict unstable patient states preceding anaphylactic shock.http://www.sciencedirect.com/science/article/pii/S2667119022000106AnesthesiaAnaphylactic reactionPerioperative risk forecastingMachine learning
spellingShingle Shuang Liu
Yasuyuki Suzuki
Toshihiro Yorozuya
Masaki Mogi
Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
ImmunoInformatics
Anesthesia
Anaphylactic reaction
Perioperative risk forecasting
Machine learning
title Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
title_full Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
title_fullStr Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
title_full_unstemmed Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
title_short Machine-learning-based analytics for risk forecasting of anaphylaxis during general anesthesia
title_sort machine learning based analytics for risk forecasting of anaphylaxis during general anesthesia
topic Anesthesia
Anaphylactic reaction
Perioperative risk forecasting
Machine learning
url http://www.sciencedirect.com/science/article/pii/S2667119022000106
work_keys_str_mv AT shuangliu machinelearningbasedanalyticsforriskforecastingofanaphylaxisduringgeneralanesthesia
AT yasuyukisuzuki machinelearningbasedanalyticsforriskforecastingofanaphylaxisduringgeneralanesthesia
AT toshihiroyorozuya machinelearningbasedanalyticsforriskforecastingofanaphylaxisduringgeneralanesthesia
AT masakimogi machinelearningbasedanalyticsforriskforecastingofanaphylaxisduringgeneralanesthesia