Stochastic Planning of Synergetic Conventional Vehicle and UAV Delivery Operations

Synergetic transportation schemes are extensively used in package delivery operations, exploiting the best features of different modes. This paper proposes a methodology to solve the mode assignment and routing problem for the case of combined conventional vehicle and unmanned aerial vehicle (CV–UAV...

Full description

Saved in:
Bibliographic Details
Main Authors: Konstantinos Kouretas, Konstantinos Kepaptsoglou
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/5/359
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synergetic transportation schemes are extensively used in package delivery operations, exploiting the best features of different modes. This paper proposes a methodology to solve the mode assignment and routing problem for the case of combined conventional vehicle and unmanned aerial vehicle (CV–UAV) parcel deliveries under uncertainty for next-day operations. This research incorporates ground and air uncertainties: travel times are assumed for conventional vehicles, while UAV paths are affected by weather conditions and restricted flying zones. A nested genetic algorithm is initially used to solve the problem under fixed conditions. Then, a robust optimization approach is employed to propose the best solution that will perform well in a stochastic environment. The framework is applied to a case study of realistic urban–suburban size, and results are discussed. The entire platform is useful for strategic decisions on infrastructure and for operation planning with satisfactory performance and less risk.
ISSN:2504-446X