Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study

BackgroundCardiac disease (CD) is a primary long-term diagnosed pathology among childhood cancer survivors. Dosiomics (radiomics extracted from the dose distribution) have received attention in the past few years to assess better the induced risk of radiotherapy (RT) than standard dosimetric feature...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahmoud Bentriou, Véronique Letort, Stefania Chounta, Brice Fresneau, Duyen Do, Nadia Haddy, Ibrahima Diallo, Neige Journy, Monia Zidane, Thibaud Charrier, Naila Aba, Claire Ducos, Vincent S. Zossou, Florent de Vathaire, Rodrigue S. Allodji, Sarah Lemler
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-12-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846145079701405696
author Mahmoud Bentriou
Véronique Letort
Stefania Chounta
Stefania Chounta
Stefania Chounta
Stefania Chounta
Brice Fresneau
Brice Fresneau
Brice Fresneau
Brice Fresneau
Duyen Do
Duyen Do
Duyen Do
Nadia Haddy
Nadia Haddy
Nadia Haddy
Ibrahima Diallo
Ibrahima Diallo
Neige Journy
Neige Journy
Neige Journy
Monia Zidane
Monia Zidane
Monia Zidane
Thibaud Charrier
Thibaud Charrier
Thibaud Charrier
Naila Aba
Naila Aba
Naila Aba
Claire Ducos
Claire Ducos
Claire Ducos
Vincent S. Zossou
Vincent S. Zossou
Vincent S. Zossou
Florent de Vathaire
Florent de Vathaire
Florent de Vathaire
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Sarah Lemler
author_facet Mahmoud Bentriou
Véronique Letort
Stefania Chounta
Stefania Chounta
Stefania Chounta
Stefania Chounta
Brice Fresneau
Brice Fresneau
Brice Fresneau
Brice Fresneau
Duyen Do
Duyen Do
Duyen Do
Nadia Haddy
Nadia Haddy
Nadia Haddy
Ibrahima Diallo
Ibrahima Diallo
Neige Journy
Neige Journy
Neige Journy
Monia Zidane
Monia Zidane
Monia Zidane
Thibaud Charrier
Thibaud Charrier
Thibaud Charrier
Naila Aba
Naila Aba
Naila Aba
Claire Ducos
Claire Ducos
Claire Ducos
Vincent S. Zossou
Vincent S. Zossou
Vincent S. Zossou
Florent de Vathaire
Florent de Vathaire
Florent de Vathaire
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Sarah Lemler
author_sort Mahmoud Bentriou
collection DOAJ
description BackgroundCardiac disease (CD) is a primary long-term diagnosed pathology among childhood cancer survivors. Dosiomics (radiomics extracted from the dose distribution) have received attention in the past few years to assess better the induced risk of radiotherapy (RT) than standard dosimetric features such as dose-volume indicators. Hence, using the spatial information contained in the dosiomics features with machine learning methods may improve the prediction of CD.MethodsWe considered the 7670 5-year survivors of the French Childhood Cancer Survivors Study (FCCSS). Dose-volume and dosiomics features are extracted from the radiation dose distribution of 3943 patients treated with RT. Survival analysis is performed considering several groups of features and several models [Cox Proportional Hazard with Lasso penalty, Cox with Bootstrap Lasso selection, Random Survival Forests (RSF)]. We establish the performance of dosiomics compared to baseline models by estimating C-index and Integrated Brier Score (IBS) metrics with 5-fold stratified cross-validation and compare their time-dependent error curves.ResultsAn RSF model adjusted on the first-order dosiomics predictors extracted from the whole heart performed best regarding the C-index (0.792 ± 0.049), and an RSF model adjusted on the first-order dosiomics predictors extracted from the heart’s subparts performed best regarding the IBS (0.069 ± 0.05). However, the difference is not statistically significant with the standard models (C-index of Cox PH adjusted on dose-volume indicators: 0.791 ± 0.044; IBS of Cox PH adjusted on the mean dose to the heart: 0.074 ± 0.056).ConclusionIn this study, dosiomics models have slightly better performance metrics but they do not outperform the standard models significantly. Quantiles of the dose distribution may contain enough information to estimate the risk of late radio-induced high-grade CD in childhood cancer survivors.
format Article
id doaj-art-8258bcdae299469f8934d3f290f31e94
institution Kabale University
issn 2234-943X
language English
publishDate 2024-12-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj-art-8258bcdae299469f8934d3f290f31e942024-12-02T06:23:37ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2024-12-011410.3389/fonc.2024.12412211241221Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor StudyMahmoud Bentriou0Véronique Letort1Stefania Chounta2Stefania Chounta3Stefania Chounta4Stefania Chounta5Brice Fresneau6Brice Fresneau7Brice Fresneau8Brice Fresneau9Duyen Do10Duyen Do11Duyen Do12Nadia Haddy13Nadia Haddy14Nadia Haddy15Ibrahima Diallo16Ibrahima Diallo17Neige Journy18Neige Journy19Neige Journy20Monia Zidane21Monia Zidane22Monia Zidane23Thibaud Charrier24Thibaud Charrier25Thibaud Charrier26Naila Aba27Naila Aba28Naila Aba29Claire Ducos30Claire Ducos31Claire Ducos32Vincent S. Zossou33Vincent S. Zossou34Vincent S. Zossou35Florent de Vathaire36Florent de Vathaire37Florent de Vathaire38Rodrigue S. Allodji39Rodrigue S. Allodji40Rodrigue S. Allodji41Rodrigue S. Allodji42Sarah Lemler43Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Pediatric Oncology, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceDepartment of Radiation Oncology, Gustave Roussy, Paris, FranceGustave Roussy, Institut national de la santé et de la recherche médicale (INSERM), Radiothérapie Moléculaire et Innovation Thérapeutique, Paris-Saclay University, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), U900, Institut Curie, PSL Research University, Saint-Cloud, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FranceUniversité Paris-Saclay, Université Versailles - Saint Quentin en Yvelines (UVSQ), Institut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Villejuif, FranceInstitut national de la santé et de la recherche médicale (INSERM), CESP-U1018, Radiation Epidemiology Team, Villejuif, FranceGustave Roussy, Department of Clinical Research, Radiation Epidemiology Team, Villejuif, FrancePolytechnic School of Abomey-Calavi (EPAC), University of Abomey-Calavi, Cotonou, BeninUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceBackgroundCardiac disease (CD) is a primary long-term diagnosed pathology among childhood cancer survivors. Dosiomics (radiomics extracted from the dose distribution) have received attention in the past few years to assess better the induced risk of radiotherapy (RT) than standard dosimetric features such as dose-volume indicators. Hence, using the spatial information contained in the dosiomics features with machine learning methods may improve the prediction of CD.MethodsWe considered the 7670 5-year survivors of the French Childhood Cancer Survivors Study (FCCSS). Dose-volume and dosiomics features are extracted from the radiation dose distribution of 3943 patients treated with RT. Survival analysis is performed considering several groups of features and several models [Cox Proportional Hazard with Lasso penalty, Cox with Bootstrap Lasso selection, Random Survival Forests (RSF)]. We establish the performance of dosiomics compared to baseline models by estimating C-index and Integrated Brier Score (IBS) metrics with 5-fold stratified cross-validation and compare their time-dependent error curves.ResultsAn RSF model adjusted on the first-order dosiomics predictors extracted from the whole heart performed best regarding the C-index (0.792 ± 0.049), and an RSF model adjusted on the first-order dosiomics predictors extracted from the heart’s subparts performed best regarding the IBS (0.069 ± 0.05). However, the difference is not statistically significant with the standard models (C-index of Cox PH adjusted on dose-volume indicators: 0.791 ± 0.044; IBS of Cox PH adjusted on the mean dose to the heart: 0.074 ± 0.056).ConclusionIn this study, dosiomics models have slightly better performance metrics but they do not outperform the standard models significantly. Quantiles of the dose distribution may contain enough information to estimate the risk of late radio-induced high-grade CD in childhood cancer survivors.https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/fullsurvival analysisdosiomicscardiac diseasechildhood cancermachine learningFCCSS
spellingShingle Mahmoud Bentriou
Véronique Letort
Stefania Chounta
Stefania Chounta
Stefania Chounta
Stefania Chounta
Brice Fresneau
Brice Fresneau
Brice Fresneau
Brice Fresneau
Duyen Do
Duyen Do
Duyen Do
Nadia Haddy
Nadia Haddy
Nadia Haddy
Ibrahima Diallo
Ibrahima Diallo
Neige Journy
Neige Journy
Neige Journy
Monia Zidane
Monia Zidane
Monia Zidane
Thibaud Charrier
Thibaud Charrier
Thibaud Charrier
Naila Aba
Naila Aba
Naila Aba
Claire Ducos
Claire Ducos
Claire Ducos
Vincent S. Zossou
Vincent S. Zossou
Vincent S. Zossou
Florent de Vathaire
Florent de Vathaire
Florent de Vathaire
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Rodrigue S. Allodji
Sarah Lemler
Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
Frontiers in Oncology
survival analysis
dosiomics
cardiac disease
childhood cancer
machine learning
FCCSS
title Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
title_full Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
title_fullStr Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
title_full_unstemmed Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
title_short Combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors: the French Childhood Cancer Survivor Study
title_sort combining dosiomics and machine learning methods for predicting severe cardiac diseases in childhood cancer survivors the french childhood cancer survivor study
topic survival analysis
dosiomics
cardiac disease
childhood cancer
machine learning
FCCSS
url https://www.frontiersin.org/articles/10.3389/fonc.2024.1241221/full
work_keys_str_mv AT mahmoudbentriou combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT veroniqueletort combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT stefaniachounta combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT stefaniachounta combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT stefaniachounta combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT stefaniachounta combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT bricefresneau combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT bricefresneau combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT bricefresneau combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT bricefresneau combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT duyendo combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT duyendo combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT duyendo combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nadiahaddy combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nadiahaddy combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nadiahaddy combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT ibrahimadiallo combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT ibrahimadiallo combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT neigejourny combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT neigejourny combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT neigejourny combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT moniazidane combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT moniazidane combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT moniazidane combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT thibaudcharrier combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT thibaudcharrier combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT thibaudcharrier combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nailaaba combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nailaaba combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT nailaaba combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT claireducos combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT claireducos combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT claireducos combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT vincentszossou combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT vincentszossou combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT vincentszossou combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT florentdevathaire combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT florentdevathaire combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT florentdevathaire combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT rodriguesallodji combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT rodriguesallodji combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT rodriguesallodji combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT rodriguesallodji combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy
AT sarahlemler combiningdosiomicsandmachinelearningmethodsforpredictingseverecardiacdiseasesinchildhoodcancersurvivorsthefrenchchildhoodcancersurvivorstudy