Biomaterials‐Involved Construction of Extracellular Matrices for Tumor Blockade Therapy

ABSTRACT Extracellular matrices (ECMs) play a crucial role in the onset and progression of tumors by providing structural support and promoting the proliferation and metastases of tumor cells. Current therapeutic approaches targeting tumor ECMs focus on two main strategies: Inhibiting matrix degrada...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinfeng Sun, Yang Liu, Jingshan Sun, Jianxun Ding, Xuesi Chen
Format: Article
Language:English
Published: Wiley 2025-08-01
Series:Exploration
Subjects:
Online Access:https://doi.org/10.1002/EXP.20240229
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Extracellular matrices (ECMs) play a crucial role in the onset and progression of tumors by providing structural support and promoting the proliferation and metastases of tumor cells. Current therapeutic approaches targeting tumor ECMs focus on two main strategies: Inhibiting matrix degradation to prevent metastases and facilitating matrix degradation to enhance the penetration of drugs and immune cells. However, these strategies may lead to unintended consequences, such as tumor growth promotion, drug resistance, and side effects like fibrotic changes in healthy tissues. Biomaterials have made significant progress in fabricating artificial ECMs for tumor therapy by inducing biomineralization, fibrogenesis, or gelation. This perspective explores the fundamental concepts, benefits, and challenges of each technique. Additionally, future improvements and research directions in artificial ECMs are discussed, highlighting their potential to advance tumor therapy.
ISSN:2766-8509
2766-2098