Dynamic Tumor Immunology-on-a-Chip for Peripheral Blood-Derived Tumor-Reactive T Cell Expansion

Adoptive T cell therapy has shown great promise in the treatment of solid tumors, which, however, poses a great challenge to obtain autologous tumor-reactive T cells in a cost-effective manner. Here, we present a dynamic tumor immunology-on-a-chip, mimicking immune responses, for achieving the enric...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Shou, Yunru Yu, Dan Wu, Peihua Lu, Miaoqing Zhao, Yuanjin Zhao
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2025-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0639
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adoptive T cell therapy has shown great promise in the treatment of solid tumors, which, however, poses a great challenge to obtain autologous tumor-reactive T cells in a cost-effective manner. Here, we present a dynamic tumor immunology-on-a-chip, mimicking immune responses, for achieving the enrichment and expansion of tumor-reactive T cells. Tumor spheroids with uniform size can be generated by seeding tumor cells in hydrogel-embedded micropillar arrays, and could be trapped upon removal of hydrogel. Then, T cells were infused and fully contacted with these tumor spheroids under biomimetic flow conditions provided by herringbone-patterned microgrooves arrays. We found that the tamed tumor-reactive T cells could be fully activated and a rapid clonal proliferation was realized during the cultivation. In addition, these tumor-reactive T cells exhibited a specific and powerful tumor-killing capability in vitro. Thus, the suggested dynamic microfluidic chips with staged structure-transformable properties realize both the producible formation of tumor spheroids and the recapitulation of tumor-immune crosstalk to expand tumor-reactive T cells. These features indicate that the dynamic and reproducible tumor immunology-on-a-chip has potential in the preparation of therapeutic T cell products for clinical cancer immunotherapy.
ISSN:2639-5274