Operator realizations of non-commutative analytic functions

A realization is a triple, $(A,b,c)$ , consisting of a $d-$ tuple, $A= (A_1, \cdots , A_d )$ , $d\in \mathbb {N}$ , of bounded linear operators on a separable, complex Hilbert space, $\mathcal {H}$ , and vectors $b,c \in \mathcal {H}$ . Any such realization define...

Full description

Saved in:
Bibliographic Details
Main Authors: Méric L. Augat, Robert T. W. Martin, Eli Shamovich
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509425100388/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!