Effect of CoO loading on electrochemical properties of activated carbon from sugarcane bagasse
Activated carbon is synthesized from sugarcane bagasse through a pre-carbonization process in a muffle furnace at 400 °C, followed by carbonization and activation using the pyrolysis method at 800 °C. In the activation process, pre-carbonized SB is activated using 0.1 M NaOH. The activated carbon i...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
International Association of Physical Chemists (IAPC)
2024-12-01
|
| Series: | Journal of Electrochemical Science and Engineering |
| Subjects: | |
| Online Access: | https://pub.iapchem.org/ojs/index.php/JESE/article/view/2439 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Activated carbon is synthesized from sugarcane bagasse through a pre-carbonization process in a muffle furnace at 400 °C, followed by carbonization and activation using the pyrolysis method at 800 °C. In the activation process, pre-carbonized SB is activated using 0.1 M NaOH. The activated carbon is then impregnated with cobalt oxide (CoO) using a hydrothermal method at 110 °C to improve its electrochemical performance. After impregnation, the presence of CoO is confirmed by X-ray diffraction patterns. Scanning electron microscopy suggests that the samples' morphology shows pore structures. Electrochemical properties are measured by cyclic voltammetry and galvanostatic charging-discharging techniques using a three-electrode system with 1 M Na2SO4 as an electrolyte. It is found that the specific capacitance of activated carbon from SB is 89.53 F/g, while after impregnation with CoO, it increases to 102.04 F/g at the same current density of 0.05 A/g.
|
|---|---|
| ISSN: | 1847-9286 |