The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction

<p>This study introduces the actuator farm model (AFM), a novel parameterization for simulating wind turbines within large eddy simulations (LESs) of wind farms. Unlike conventional models like the actuator disk (AD) or actuator line (AL), the AFM utilizes a single actuator point at the rotor...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Stipa, A. Ajay, J. Brinkerhoff
Format: Article
Language:English
Published: Copernicus Publications 2024-12-01
Series:Wind Energy Science
Online Access:https://wes.copernicus.org/articles/9/2301/2024/wes-9-2301-2024.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846117419772280832
author S. Stipa
A. Ajay
J. Brinkerhoff
author_facet S. Stipa
A. Ajay
J. Brinkerhoff
author_sort S. Stipa
collection DOAJ
description <p>This study introduces the actuator farm model (AFM), a novel parameterization for simulating wind turbines within large eddy simulations (LESs) of wind farms. Unlike conventional models like the actuator disk (AD) or actuator line (AL), the AFM utilizes a single actuator point at the rotor center and only requires two to three mesh cells across the rotor diameter. Turbine force is distributed to the surrounding cells using a new projection function characterized by an axisymmetric spatial support in the rotor plane and Gaussian decay in the streamwise direction. The spatial support's size is controlled by three parameters: the half-decay radius <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>r</mi><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">2</mn></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="27f1caa887926dd8dce18530ebf900c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00001.svg" width="20pt" height="12pt" src="wes-9-2301-2024-ie00001.png"/></svg:svg></span></span>, smoothness <span class="inline-formula"><i>s</i></span>, and streamwise standard deviation <span class="inline-formula"><i>σ</i></span>. Numerical experiments on an isolated National Renewable Energy Laboratory (NREL) 5MW wind turbine demonstrate that selecting <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>r</mi><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">2</mn></mrow></msub><mo>=</mo><mi>R</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4f7e0481fb859c228ed057d5eb4a8cc5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00002.svg" width="40pt" height="14pt" src="wes-9-2301-2024-ie00002.png"/></svg:svg></span></span> (where <span class="inline-formula"><i>R</i></span> is the turbine radius), <span class="inline-formula"><i>s</i></span> between 6 and 10, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">σ</mi><mo>≈</mo><mi mathvariant="normal">Δ</mi><mi>x</mi><mo>/</mo><mn mathvariant="normal">1.6</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="513419cf9f56555a3167718d25d80d91"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00003.svg" width="58pt" height="14pt" src="wes-9-2301-2024-ie00003.png"/></svg:svg></span></span> (where <span class="inline-formula">Δ<i>x</i></span> is the grid size in the streamwise direction) yields wake deficit profiles, turbine thrust, and power predictions similar to those obtained using the actuator disk model (ADM), irrespective of horizontal grid spacing down to the order of the rotor radius.</p> <p>Using these parameters, LESs of a small cluster of 25 turbines in both staggered and aligned layouts are conducted at different horizontal grid resolutions using the AFM. Results are compared against ADM simulations employing a spatial resolution that places at least <span class="inline-formula">10</span> grid points across the rotor diameter. The wind farm is placed in a neutral atmospheric boundary layer (ABL) with turbulent inflow conditions interpolated from a previous simulation without turbines. At horizontal resolutions finer than or equal to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>R</mi><mo>/</mo><mn mathvariant="normal">2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d9eeacd57a6767478330158ce905f4c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00004.svg" width="23pt" height="14pt" src="wes-9-2301-2024-ie00004.png"/></svg:svg></span></span>, the AFM yields similar velocity, shear stress, turbine thrust, and power as the ADM. Coarser resolutions reveal the AFM's ability to accurately capture power at the non-waked wind farm rows, although it underestimates the power of waked turbines. However, the far wake of the cluster can be predicted well even when the cell size is of the order of the turbine radius.</p> <p>Finally, combining the AFM with a domain nesting method allows us to conduct simulations of two aligned wind farms in a fully neutral ABL and of wind-farm-induced atmospheric gravity waves under a conventionally neutral ABL, obtaining excellent agreement with ADM simulations but with much lower computational cost. The simulations highlight the AFM's ability to investigate the mutual interactions between large turbine arrays and the thermally stratified atmosphere.</p>
format Article
id doaj-art-81a575295d2042ee8678c8d5110c27cd
institution Kabale University
issn 2366-7443
2366-7451
language English
publishDate 2024-12-01
publisher Copernicus Publications
record_format Article
series Wind Energy Science
spelling doaj-art-81a575295d2042ee8678c8d5110c27cd2024-12-18T10:48:04ZengCopernicus PublicationsWind Energy Science2366-74432366-74512024-12-0192301233210.5194/wes-9-2301-2024The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interactionS. Stipa0A. Ajay1J. Brinkerhoff2School of Engineering, University of British Columbia – Okanagan, Kelowna, CanadaSchool of Engineering, University of British Columbia – Okanagan, Kelowna, CanadaSchool of Engineering, University of British Columbia – Okanagan, Kelowna, Canada<p>This study introduces the actuator farm model (AFM), a novel parameterization for simulating wind turbines within large eddy simulations (LESs) of wind farms. Unlike conventional models like the actuator disk (AD) or actuator line (AL), the AFM utilizes a single actuator point at the rotor center and only requires two to three mesh cells across the rotor diameter. Turbine force is distributed to the surrounding cells using a new projection function characterized by an axisymmetric spatial support in the rotor plane and Gaussian decay in the streamwise direction. The spatial support's size is controlled by three parameters: the half-decay radius <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>r</mi><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">2</mn></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="27f1caa887926dd8dce18530ebf900c8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00001.svg" width="20pt" height="12pt" src="wes-9-2301-2024-ie00001.png"/></svg:svg></span></span>, smoothness <span class="inline-formula"><i>s</i></span>, and streamwise standard deviation <span class="inline-formula"><i>σ</i></span>. Numerical experiments on an isolated National Renewable Energy Laboratory (NREL) 5MW wind turbine demonstrate that selecting <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>r</mi><mrow><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">2</mn></mrow></msub><mo>=</mo><mi>R</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="40pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4f7e0481fb859c228ed057d5eb4a8cc5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00002.svg" width="40pt" height="14pt" src="wes-9-2301-2024-ie00002.png"/></svg:svg></span></span> (where <span class="inline-formula"><i>R</i></span> is the turbine radius), <span class="inline-formula"><i>s</i></span> between 6 and 10, and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">σ</mi><mo>≈</mo><mi mathvariant="normal">Δ</mi><mi>x</mi><mo>/</mo><mn mathvariant="normal">1.6</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="513419cf9f56555a3167718d25d80d91"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00003.svg" width="58pt" height="14pt" src="wes-9-2301-2024-ie00003.png"/></svg:svg></span></span> (where <span class="inline-formula">Δ<i>x</i></span> is the grid size in the streamwise direction) yields wake deficit profiles, turbine thrust, and power predictions similar to those obtained using the actuator disk model (ADM), irrespective of horizontal grid spacing down to the order of the rotor radius.</p> <p>Using these parameters, LESs of a small cluster of 25 turbines in both staggered and aligned layouts are conducted at different horizontal grid resolutions using the AFM. Results are compared against ADM simulations employing a spatial resolution that places at least <span class="inline-formula">10</span> grid points across the rotor diameter. The wind farm is placed in a neutral atmospheric boundary layer (ABL) with turbulent inflow conditions interpolated from a previous simulation without turbines. At horizontal resolutions finer than or equal to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>R</mi><mo>/</mo><mn mathvariant="normal">2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d9eeacd57a6767478330158ce905f4c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="wes-9-2301-2024-ie00004.svg" width="23pt" height="14pt" src="wes-9-2301-2024-ie00004.png"/></svg:svg></span></span>, the AFM yields similar velocity, shear stress, turbine thrust, and power as the ADM. Coarser resolutions reveal the AFM's ability to accurately capture power at the non-waked wind farm rows, although it underestimates the power of waked turbines. However, the far wake of the cluster can be predicted well even when the cell size is of the order of the turbine radius.</p> <p>Finally, combining the AFM with a domain nesting method allows us to conduct simulations of two aligned wind farms in a fully neutral ABL and of wind-farm-induced atmospheric gravity waves under a conventionally neutral ABL, obtaining excellent agreement with ADM simulations but with much lower computational cost. The simulations highlight the AFM's ability to investigate the mutual interactions between large turbine arrays and the thermally stratified atmosphere.</p>https://wes.copernicus.org/articles/9/2301/2024/wes-9-2301-2024.pdf
spellingShingle S. Stipa
A. Ajay
J. Brinkerhoff
The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
Wind Energy Science
title The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
title_full The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
title_fullStr The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
title_full_unstemmed The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
title_short The actuator farm model for large eddy simulation (LES) of wind-farm-induced atmospheric gravity waves and farm–farm interaction
title_sort actuator farm model for large eddy simulation les of wind farm induced atmospheric gravity waves and farm farm interaction
url https://wes.copernicus.org/articles/9/2301/2024/wes-9-2301-2024.pdf
work_keys_str_mv AT sstipa theactuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction
AT aajay theactuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction
AT jbrinkerhoff theactuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction
AT sstipa actuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction
AT aajay actuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction
AT jbrinkerhoff actuatorfarmmodelforlargeeddysimulationlesofwindfarminducedatmosphericgravitywavesandfarmfarminteraction